近日,基于兰州重离子加速器装置(HIRFL)的放射性束流线RIBLL1,中国科学院近代物理研究所超重核与核结构室研究员周小红、郭松及合作者利用同核异能态束流研究了电子俘获致同核异能态激发现象。该实验工作大幅提升了测量精度和可靠性,首次提供了与理论预期相符的测量结果,相关结果于6月17日发表在《物理评论快报》上。
长寿命的同核异能态普遍存在。一般情况下,同核异能态具有MeV量级的激发能,是潜在的理想储能材料。如果能够人工大量生产并控制其退激发释放能量,同核异能态可被用于新一代高能量密度核电池等产品的研发。理论预言,同核异能态有可能被电子俘获高效激发,并在后续退激过程中释放全部能量。
2018年,美国科学家报道了首例电子俘获致同核异能态激发的现象,然而实验测量的激发几率远超理论预期,引起了学界的关注和讨论。近代物理所研究人员于2021年在《自然》上发表的评论文章指出,该工作是在复杂和极强γ本底条件下开展的,且其本底处理较为理想化,因而可能导致激发几率被高估。
针对此前实验工作的不足,近代物理所等的科研人员设计了全新的实验方案。本文的第一作者郭松介绍,实验中,基于初级核反应产生93mMo同核异能态,他们利用约35米的放射性束流线把93mMo同核异能态分离、传输到低本底测量区,结合与注入信号的关联,在很低的本底水平下开展了精确测量。
科研人员最终没有观测到电子俘获致核激发的现象,提取的实验激发几率的上限值为2×10-5。审稿人认为:“这项工作与此前报道相比,结果更加可靠,测量精度也有了显著的提高。”
本文的通讯作者周小红表示,以上结果表明,同核异能态离子在固体材料中慢化和阻停的过程中,激发几率很小,这与相关理论计算结果一致。他指出,该工作验证了利用同核异能态束流研究电子俘获致核激发的可行性和必要性,为后续研究指明了方向。
本工作实验设置。93mMo粒子在RIBLL束流线初级靶位置(左上角)通过熔合蒸发反应产生,经束线进入注入端(右下角)。左下角展示93mMo在注入端发生同核异能态诱发退激与自发退激的过程,右上角展示探测端设置。 (图源自郭松)
该工作得到了国家重点研发计划、中科院战略性先导科技专项(B类)、国家自然科学基金等项目的支持。(来源:中国科学报 刘如楠 甘晓)
相关论文信息:https://doi.org/10.1103/PhysRevLett.128.242502
版权声明:凡本网注明“来源:中国科学报、科学网、科学新闻杂志”的所有作品,网站转载,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱:shouquan@stimes.cn。