来源:Frontiers in Energy 发布时间:2022/6/23 11:09:54
选择字号:
FIE | 前沿视点:面向碳中和的液态金属技术研究进展与展望

论文标题:Emerging roles of liquid metals in carbon neutrality(面向碳中和的液态金属技术研究进展与展望)

期刊:Frontiers in Energy

作者:Yueguang DENG, Jing LI , Ertai E

发表时间:14 Jun 2022

DOI:10.1007/s11708-022-0829-5

微信链接:点击此处阅读微信文章

近日,本刊发表了来自北京理工大学邓月光副教授的观点文章(Viewpoint): Emerging roles of liquid metals in carbon neutrality介绍了液态金属材料在促进碳中和方面的优势,阐述了典型液态金属技术在碳中和领域的节能减排作用,分析了液态金属碳中和技术在应用方面的挑战,并展望了液态金属碳中和技术的广泛应用前景。

#1 中国实现碳中和现状简述

2020年9月,中国承诺在2030年前二氧化碳排放达到峰值,并在2060年前实现碳中和。中国作为世界上最大的能源消费国和碳排放国,其二氧化碳排放量约占全球总量的三分之一。2020年,中国的排放总量约为13 吉吨二氧化碳当量,其中来自能源体系的二氧化碳排放超过11 吉吨。碳排放的主要来源包括发电和供热、工业、交通、建筑,分别约占能源系统碳排放的48%、36%、8%、5%。要想在2030年前实现二氧化碳排放达峰,则有赖于三个关键领域的进展:提高能效、发展可再生能源以及减少煤炭消耗。

#2 液态金属的优良特性及其在碳中和领域的典型应用

技术创新是实现碳中和的重要驱动力。目前,低熔点液态金属已成为一个重要的研究课题。此处,液态金属是指低熔点合金(主要是Ga基和Bi基合金)及其复合材料。基于液态金属优异的物化性质,如低熔点、高热/电导率、独特的催化性能、流体性质和无毒性,其在促进碳中和方面具有出巨大的应用潜力。图1显示了液态金属技术在碳中和领域(发电、工业、运输和建筑)中的典型应用。

图1 液态金属技术在碳中和领域的典型应用。

(1) 发电

在发电领域,为实现碳中和,预计可再生能源发电量(主要是风能和太阳能光伏发电)将在2020年至2060年间增长六倍,将能占总发电量的80%左右。液态金属对流技术有着优越的对流传热系数(>10000 W/(m2·K))、高沸点(>1500°C)和电磁驱动特性,因而可用于太阳能聚光光伏和碟式太阳能发电。高性能液态金属冷却不仅可提高光伏电池的能量转换效率,还能提升系统的稳定性。研究发现,液态金属散热系统可以解决100 W/cm2的热流密度,相当于可为聚光比为1000的聚光光伏系统提供有效冷却,并显著提升单位电池面积的功率输出。此外,基于铋基或锡基合金的液态金属对流可应用于高温碟式太阳能热发电系统(>600°C)。与熔盐相比,液态金属具有更高的沸点和热导率,使得碟式发电系统可以高温传热/储热,并获得更高的发电效率。

在储电领域,高效率低成本的储能系统是解决风能和太阳能产电间歇性问题的关键。液态金属电池结构灵活、成本低、制造方便、循环寿命长,故在此方面具有广阔的前景。液态金属电池是由三层液体组成的电化学电池,其液-液界面赋予了其优越的动力学传输特性,可以在高达2 A/cm2的高电流密度下运行。其液态金属电极消除了枝晶生长,使长周期寿命成为可能。当前,用于电网规模储能的典型液态金属电池主要基于Mg–Sb、Li–Sb–Pb、Li–Sb–Sn和Ca–Mg–Bi电极,在高温(200–600°C)下工作,能量密度和材料成本分别约为100–200Wh/kg和60–300$/kWh。对电极设计和界面化学的持续研究与突破,将提升液态金属电池作为未来大型储能系统的潜力。

在输电领域,液态金属电界面材料作为降低输电损耗的替代材料受到了大量关注,其电导率(约5×106 S/m)远优于传统电界面材料。与传统导电界面材料相比,液态金属电界面材料可将电缆接触电阻降低约30%,从而显著降低电网电损耗,提高系统安全性。由于电网线损占总传输电能的3%–5%,预计电网中液态金属电界面材料的使用可有助于每年减少约千万吨的二氧化碳排放量。

(2)工业

对于大宗商品(如粗钢、水泥、铝、纸和初级化学品)的工业生产,节能对减少碳排放具有显著效果。在高温炼钢工业中,由于液态金属的高对流换热性能和高温(>1000°C)下优异稳定性,液态金属余热回收具有突出优势。高温钢渣的常规快速冷却通常是通过喷射冷却水来实现的,这会导致显著的热能浪费和环境污染。液态金属对流可以有效地将钢渣从1500°C冷却到700°C,并产生饱和或过热蒸汽,随后用于汽轮机发电。典型液态金属余热回收系统的钢渣处理能力约为50吨/天,系统成本约为500000美元,但年经济收益(蒸汽生产和节水)可超过200000美元。就环境效益而言,每年可节约10000吨以上的冷却水,同时减少约千吨的碳排放量。

(3)运输

氢动力燃料电池车/船/飞机是实现长途绿色运输的重要方式,而液态金属催化制氢具有高能量密度和环境友好的特点,可为汽车、水下航行器、飞机和火箭提供一种有前景的供能方法。液态金属制氢剂(LMHGCs)主要由Al和Ga–In–Sn合金组成。LMHGCs的成本约为3–10美元/千克,与水反应时可获得1立方米/千克的氢气产量。液态金属制氢剂可按需实时制氢,避免了氢能源汽车对储氢罐的需求并减小了高压储存易燃气体的风险。LMHGC产生的机械能虽然比汽油少约40%,但却提供了一种不涉及温室气体排放的环保驾驶体验。此外,液态金属制氢反应产物还可以循环使用,可通过系统优化进一步降低成本。

(4)建筑

供暖和制冷约占中国建筑总能耗的65%。对于数据中心,冷却直接决定了其能耗和碳排放。液态金属热界面材料(TIMs)是界面传热领域的一个重要进展,可以有效冷却大功率芯片,降低冷却功耗。液态金属TIM的热导率(10–80 W/(m·K))远高于传统TIM,因此保证了更好的冷却性能。对于数据中心(典型芯片热流密度为10 W/cm2),研究表明当使用液态金属TIM代替传统硅脂时,芯片温度可降低10°C。故可同时提高冷却系统的送风温度,从而降低20%–40%的冷却能耗。基于数据中心的巨大能耗,液态金属TIMs的大规模应用可望在中国每年减少数千万吨的碳排放量。目前,液态金属TIM在数据中心、数字货币采矿机和LED照明等建筑节能应用中已具备出色的经济可行性和碳减排实用价值。

(5)碳捕获、利用和储存(CCUS)

到2060年,CCUS技术将完全抵消工业和运输部门的剩余排放。液态金属催化剂可实现室温下CO2转化为固体碳的连续电催化反应。液态金属催化剂由溶解在低熔点金属溶剂(如Ga、Sn、Bi和In)中的活性金属(Ce)制备而成。催化反应中,碳不断浮在液态金属表面,避免了传统固体催化剂面临的碳结焦催化剂失活这一最大问题。此外,这种电催化反应可以用来批量生产储能电池电极用碳质材料。因此,这种液态金属电催化过程为碳的捕获和利用提供了一种实用的方法。

#3 液态金属碳中和技术的挑战与展望

要想实现整个能源系统的脱碳,必须根据能源系统需求和中国国情,部署一系列不同层次的技术。在2060年碳中和技术蓝图中,约40%的技术目前仍处于原型阶段,这对液态金属碳中和技术而言是一个巨大的发展机遇。未来的挑战与展望总结如下:

(1)科学和技术挑战。作为一类新兴的材料技术,液态金属目前主要集中于学术研究领域。为促进其大规模工业应用,必须对材料数据库、能源系统优化、规模生产和技术可靠性(如:液态金属低温膨胀、高温腐蚀和氧化失效)等方面开展更多的研究。

(2)储量和经济可行性。镓基液态金属通常熔点较低(<30℃),但价格较贵(150–300美元/千克);而铋基液态金属熔点较高(>60℃),但价格相对便宜(50–100美元/千克)。因此,镓基液态金属优先适用于具有高附加值的室温应用,如热界面材料或室温液态金属电池。相比之下,铋基液态金属更适合高温和对成本敏感的能源应用,如太阳能热发电。储量方面,虽然当前镓价格昂贵,但地壳中的镓储量与镍和铜相当,超过了锡和铅,这表明未来镓基液态金属的成本具有很大下降空间。

(3)政策考虑。考虑到液态金属碳中和技术高度多样化,需要针对每项技术进行评估,以匹配中国的各行业产业现状和优势(高镓/铟/铋储量)。对于初投资规模较大的技术,如太阳能热发电和余热回收,可以通过适当的经济政策进行有效激励。对于具有高市场竞争力的成熟技术,如液态金属热界面材料,可通过强有力的知识产权保护、公平的市场准入来促进这些技术的商业化。

液态金属技术在实现碳中和方面具有独特的优势和应用前景。全球对绿色生态的需求,以及学术界和产业界的通力合作,必将推动液态金属技术在碳中和领域发挥更大的作用。

作者简介

邓月光,北京理工大学宇航学院副教授,博士生导师。美国机械工程师学会Journal of Electronic Packaging 2010–2011年度唯一最佳论文奖获得者。华中科技大学建筑环境与能源应用工程/计算机科学与技术专业双学士, 中国科学院理化技术研究所动力工程及工程热物理专业博士。长期从事液态金属新材料,工程热物理及能源科学等领域交叉科学问题研究。从材料,机理和器件角度系统深入研究了液态金属先进热管理及能源技术,并拓展了液态金属技术在信息通讯,先进能源,航空热控及光电器件等领域的系列应用。已出版能源领域相关英文学术专著1 部(Y.G. Deng, J. Liu, Liquid Metals for Advanced Energy Applications. AIP Publishing, 2022),以第一/通讯作者在Energy Convers. Manag.,Int. Commun. Heat Mass Transf.,Appl. Therm. Eng.,ASME J Electron Packag等国际知名期刊发表论文近30篇。申请发明专利10余项并获授权5项,部分专利成果成功转让企业。此外,负责研制了国内首套液态金属芯片散热产品,并实现相关技术产业化。该产品作为北京市重大科技产业化项目参加了“创新中关村”主题活动,受到新华社、新浪网、凤凰网等多家媒体的报道,并荣获“第十三届北京技术市场金桥奖项目一等奖”(集体奖)。

Frontiers in Energy (SCI,2020 IF 2.709))于2007年创刊,是全英文能源领域综合性学术期刊。主编是翁史烈院士、倪维斗院士、苏义脑院士和彭苏萍院士。执行主编是上海交通大学黄震院士。出版能源领域Reviews (综述),Research Articles(原创性研究论文),Editorial (社论),Mini-reviews (短篇综述),Perspective(前瞻),News & Highlights (新闻热点),Viewpoint(观点),Comments(评论)等。特别关注可再生能源、未来能源、超常规能源、2030能源、微/纳米能源、能源与环境等全球能源的重大挑战问题。

涉及领域包括(不限于):能源转化与利用,可再生能源,储能,氢能与燃料电池,碳捕集、利用与封存,先进核能技术,智能电网和微电网,电力与能源系统,动力电池与电动汽车,建筑节能,能源与环境,能源经济和政策等。

• 国际化的编委会队伍,海外编委约占37%

• 国际化的投审稿平台

• 高度重视学术质量,严格同行评议

• 不限文章长度,无版面费,免费语言润色

• 在线优先出版,论文快速进入SCI数据库。

• 高等教育出版社出版,Springer公司海外发行

在线浏览

http://journal.hep.com.cn/fie(国内免费开放)

https://link.springer.com/journal/11708

在线投稿

https://mc.manuscriptcentral.com/fie

联系我们

刘瑞芹

rqliu@sjtu.edu.cn, (86) 21-62933795

乔晓艳

qiaoxy@hep.com.cn, (86) 10-58556482

推荐阅读(点击超链接查看详情)

1、上海交通大学黄震院士等发文:面向碳中和的变革性技术——可再生合成燃料

2、【Frontiers in Energy】2022年第2期目录

3、【FIE News & Highlights】上海交通大学沈文忠教授/赵一新教授/刘烽教授:2021年主流太阳电池效率进展

4、【Front.Energy综述】上海交通大学江治副教授/上官文峰教授:半导体粉末体系光催化全解水制氢的研究进展

5、【Front. Energy观点】上海交通大学副教授钱小石:“泵”向更清凉的未来:零碳制冷的电卡材料

6、【Front.Energy展望】上海交通大学陈思捷副教授:能源系统中的区块链:价值、机会和局限性

7、【FIE“先进核能技术”专辑】先进核能技术一些领域的研究现状和未来研发需求

8、【FIE专刊】“光催化:从太阳能到氢能”

9、【澳大利亚昆士兰大学王连洲教授】太阳能制氢之再思考:光伏-电催化与光电催化分解水

10、 【FIE综述文章】清华大学刘静教授:镓基室温液态金属电池的总结与展望

《前沿》系列英文学术期刊

由教育部主管、高等教育出版社主办的《前沿》(Frontiers)系列英文学术期刊,于2006年正式创刊,以网络版和印刷版向全球发行。系列期刊包括基础科学、生命科学、工程技术和人文社会科学四个主题,是我国覆盖学科最广泛的英文学术期刊群,其中13种被SCI收录,其他也被A&HCI、Ei、MEDLINE或相应学科国际权威检索系统收录,具有一定的国际学术影响力。系列期刊采用在线优先出版方式,保证文章以最快速度发表。

中国学术前沿期刊网

http://journal.hep.com.cn

 
 
 
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。
 
 打印  发E-mail给: 
    
 
相关新闻 相关论文

图片新闻
极目卫星团队在伽马暴研究中取得重要进展 实践十九号卫星成功发射
科学网APP论文&基金最新活动来了 他们的15年“铸剑”之路
>>更多
 
一周新闻排行
 
编辑部推荐博文