当前位置:科学网首页 > 小柯机器人 >详情
磷掺杂单晶四元硫化物纳米带实现高效可见光光催化析氢
作者:小柯机器人 发布时间:2022/11/9 14:13:01

国科学技术大学俞书宏团队报道了磷掺杂单晶四元硫化物纳米带实现高效可见光光催化析氢。相关研究成果发表在2022年11月4日出版的《美国化学会杂志》。

促进半导体的电荷分离和传输对于提高太阳能到氢气的转换效率至关重要。为此,通过元素掺杂来操纵电荷动力学已经引起了人们的广泛关注。

该文中,研究人员将磷(P)掺杂到二维(2D)单晶四元硫化物(SCQS)纳米带中,实现了显著增强的光催化H2生成。通过仔细研究P掺杂后的载流子动力学,发现P的引入导致带隙变窄,抑制了光生载流子的复合,并增加了电导率,所有这些都有助于提高其催化性能。同时,遗传的单晶结构和暴露的(0001)面有利于载流子传输和光催化制氢。

研究已经发现,在没有助催化剂的情况下,P掺杂的Cu–Zn–In–S(CZIS)纳米带显示出12.2 mmol h–1 g–1的可见光光催化制氢速率,这是原始CZIS纳米带的3.5倍。此外,P掺杂策略被证明是其他半导体的常见策略,如单晶Cu–Zn–Ga–S(CZGS)纳米带。

该工作为操纵电荷载体提供了一种有效的方法,并将有助于开发高效的光催化剂。

附:英文原文

Title: Phosphorus-Doped Single-Crystalline Quaternary Sulfide Nanobelts Enable Efficient Visible-Light Photocatalytic Hydrogen Evolution

Author: Liang Wu, Fuhai Su, Tian Liu, Guo-Qiang Liu, Yi Li, Tao Ma, Yunfeng Wang, Chong Zhang, Yuan Yang, Shu-Hong Yu

Issue&Volume: November 4, 2022

Abstract: Facilitating charge separation and transport of semiconductors is pivotal to improving their solar-to-hydrogen conversion efficiency. To this end, manipulating the charge dynamics via element doping has attracted much attentions. Here, we doped phosphorus (P) into two-dimensional (2D) single-crystalline quaternary sulfide (SCQS) nanobelts, enabling significantly enhanced photocatalytic H2 production. By carefully studying the carrier dynamics after P doping, we found that the introduction of P leads to a narrowed band gap, inhibits the recombination of photogenerated carriers, and increases the electric conductivity, all of which contributed to their improved catalytic performance. Meanwhile, the inherited single-crystalline structure and exposed (0001) facet favors carrier transport and photocatalytic hydrogen production. It has been found that the P-doped Cu–Zn–In–S (CZIS) nanobelts exhibit a visible-light photocatalytic hydrogen production rate of 12.2 mmol h–1 g–1 without cocatalysts, which is 3.5-fold higher than that of pristine CZIS nanobelts. Moreover, the P doping strategy is proven to be common to other semiconductors, such as single-crystalline Cu–Zn–Ga–S (CZGS) nanobelts. Our work provides an efficient way to manipulate charge carriers and will help develop high-efficiency photocatalysts.

DOI: 10.1021/jacs.2c07313

Source: https://pubs.acs.org/doi/10.1021/jacs.2c07313

 

期刊信息

JACS:《美国化学会志》,创刊于1879年。隶属于美国化学会,最新IF:14.612
官方网址:https://pubs.acs.org/journal/jacsat
投稿链接:https://acsparagonplus.acs.org/psweb/loginForm?code=1000