当前位置:科学网首页 > 小柯机器人 >详情
研究揭示网格单元中群体活动的环形拓扑结构
作者:小柯机器人 发布时间:2022/1/16 13:21:12

挪威科技大学Edvard I. Moser等研究人员合作揭示网格单元中群体活动的环形拓扑结构。相关论文于2022年1月12日在线发表于国际学术期刊《自然》。

研究人员表示,内侧脑皮层是映射个体在物理环境中位置的神经系统的一部分。网格细胞是这个系统的一个关键组成部分,它以一种特征性的六边形位置模式发射,并被组织在模块中,共同构成了动物分配中心位置的群体代码。这种群体代码的相关结构在不同环境和行为状态下的不变性,与特定的感觉输入无关,这表明内在的、反复连接的连续吸引子网络(CAN)可能是网格模式的底层。然而,由于迄今为止获得的细胞样本较少,网格细胞网络是否显示出连续吸引子动态,以及它们如何与来自环境的输入对接,仍然不清楚。
 
研究人员使用来自数百个网格细胞的同步记录和随后的拓扑数据分析,表明来自单个模块网格细胞的联合活动驻留在一个环面流形上,正如预期的二维CAN。环形上的位置对应于环境中移动动物的位置。单个单元优先在环状体上的奇异位置活动。它们的位置在不同的环境中和从清醒到睡眠的过程中保持不变,这是对网格细胞的CAN模型的预测,但不是对其他前馈模型的预测。这个环面流形上的网络动态演示提供了网格细胞中CAN动态群体水平的可视化。
 
附:英文原文
 
Title: Toroidal topology of population activity in grid cells

Author: Gardner, Richard J., Hermansen, Erik, Pachitariu, Marius, Burak, Yoram, Baas, Nils A., Dunn, Benjamin A., Moser, May-Britt, Moser, Edvard I.

Issue&Volume: 2022-01-12

Abstract: The medial entorhinal cortex is part of a neural system for mapping the position of an individual within a physical environment1. Grid cells, a key component of this system, fire in a characteristic hexagonal pattern of locations2, and are organized in modules3 that collectively form a population code for the animal’s allocentric position1. The invariance of the correlation structure of this population code across environments4,5 and behavioural states6,7, independent of specific sensory inputs, has pointed to intrinsic, recurrently connected continuous attractor networks (CANs) as a possible substrate of the grid pattern1,8,9,10,11. However, whether grid cell networks show continuous attractor dynamics, and how they interface with inputs from the environment, has remained unclear owing to the small samples of cells obtained so far. Here, using simultaneous recordings from many hundreds of grid cells and subsequent topological data analysis, we show that the joint activity of grid cells from an individual module resides on a toroidal manifold, as expected in a two-dimensional CAN. Positions on the torus correspond to positions of the moving animal in the environment. Individual cells are preferentially active at singular positions on the torus. Their positions are maintained between environments and from wakefulness to sleep, as predicted by CAN models for grid cells but not by alternative feedforward models12. This demonstration of network dynamics on a toroidal manifold provides a population-level visualization of CAN dynamics in grid cells.

DOI: 10.1038/s41586-021-04268-7

Source: https://www.nature.com/articles/s41586-021-04268-7

期刊信息

Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:43.07
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html