当前位置:科学网首页 > 小柯机器人 >详情
光敏智能纳米载体非对称多孔和中空碳纳米颗粒的动力学控制超组装
作者:小柯机器人 发布时间:2022/1/14 14:20:42

复旦大学孔彪团队报道了光敏智能纳米载体非对称多孔和中空碳纳米颗粒的动力学控制超组装。相关研究成果发表在2022年1月11日出版的《美国化学会杂志》。

具有介孔壳和不对称结构的空心纳米颗粒的合理设计和可控合成是至关重要的,但仍然是重大的挑战。

该文中,研究人员开发了一种动力学控制的界面超组装策略,该策略能够通过精确调节两种前驱体的聚合和组装速率来制备不对称多孔中空碳(APHC)纳米颗粒。在该方法中,首先通过动力学控制的竞争成核和组装两种前体来制备Janus树脂和二氧化硅杂化(RSH)纳米颗粒。具体而言,最初形成二氧化硅纳米颗粒,随后在二氧化硅纳米颗粒的一侧形成树脂纳米颗粒,随后在二氧化硅纳米颗粒的另一侧形成二氧化硅和树脂的共组装。通过RSH纳米颗粒的高温碳化和二氧化硅的去除最终得到APHC纳米颗粒。在980 nm近红外(NIR)光下,不稳定的不对称、分层多孔和中空结构以及优异的光热性能赋予了APHC纳米颗粒作为无燃料纳米马达的能力,并具有NIR光驱动推进功能。在近红外光照射下,APHC外壳的光热效应产生自热泳和喷射驱动力,从而推动APHC纳米马达。

此外,在相变材料的帮助下,该APHC纳米颗粒可以用作智能载体,通过980 nm近红外激光实现药物的按需释放。作为概念证明,研究人员将这种基于APHC的治疗系统应用于癌症治疗,由于光热疗法和化疗的协同作用,该系统显示出更好的抗癌性能。

简言之,该动力学控制方法可以通过调节反应系统中多种前体的组装速率,为设计和合成具有独特结构、性能和应用的功能材料提供新的见解。

附:英文原文

Title: Kinetics-Controlled Super-Assembly of Asymmetric Porous and Hollow Carbon Nanoparticles as Light-Sensitive Smart Nanovehicles

Author: Lei Xie, Miao Yan, Tianyi Liu, Ke Gong, Xin Luo, Beilei Qiu, Jie Zeng, Qirui Liang, Shan Zhou, Yanjun He, Wei Zhang, Yilan Jiang, Yi Yu, Jinyao Tang, Kang Liang, Dongyuan Zhao, Biao Kong

Issue&Volume: January 11, 2022

Abstract: The rational design and controllable synthesis of hollow nanoparticles with both a mesoporous shell and an asymmetric architecture are crucially desired yet still significant challenges. In this work, a kinetics-controlled interfacial super-assembly strategy is developed, which is capable of preparing asymmetric porous and hollow carbon (APHC) nanoparticles through the precise regulation of polymerization and assembly rates of two kinds of precursors. In this method, Janus resin and silica hybrid (RSH) nanoparticles are first fabricated through the kinetics-controlled competitive nucleation and assembly of two precursors. Specifically, silica nanoparticles are initially formed, and the resin nanoparticles are subsequently formed on one side of the silica nanoparticles, followed by the co-assembly of silica and resin on the other side of the silica nanoparticles. The APHC nanoparticles are finally obtained via high-temperature carbonization of RSH nanoparticles and elimination of silica. The erratic asymmetrical, hierarchical porous and hollow structure and excellent photothermal performance under 980 nm near-infrared (NIR) light endow the APHC nanoparticles with the ability to serve as fuel-free nanomotors with NIR-light-driven propulsion. Upon illumination by NIR light, the photothermal effect of the APHC shell causes both self-thermophoresis and jet driving forces, which propel the APHC nanomotor. Furthermore, with the assistance of phase change materials, such APHC nanoparticles can be employed as smart vehicles that can achieve on-demand release of drugs with a 980 nm NIR laser. As a proof of concept, we apply this APHC-based therapeutic system in cancer treatment, which shows improved anticancer performance due to the synergy of photothermal therapy and chemotherapy. In brief, this kinetics-controlled approach may put forward new insight into the design and synthesis of functional materials with unique structures, properties, and applications by adjusting the assembly rates of multiple precursors in a reaction system.

DOI: 10.1021/jacs.1c10391

Source: https://pubs.acs.org/doi/10.1021/jacs.1c10391

 

期刊信息

JACS:《美国化学会志》,创刊于1879年。隶属于美国化学会,最新IF:14.612
官方网址:https://pubs.acs.org/journal/jacsat
投稿链接:https://acsparagonplus.acs.org/psweb/loginForm?code=1000