当前位置:科学网首页 > 小柯机器人 >详情
基于金属有机框架的氢键纳米阱用于乙炔的高效储存和分离
作者:小柯机器人 发布时间:2021/12/31 16:00:31

美国北得克萨斯州大学Shengqian Ma团队开发出基于金属有机框架的氢键纳米阱用于乙炔的高效储存和分离。相关研究成果于2021年12月29日发表在《美国化学会杂志》。

从乙炔(C2H2)中去除二氧化碳(CO2)是制造高纯度C2H2的关键工业过程。然而,由于其相似的物理性质和分子大小,解决吸附容量和选择性之间的权衡仍然具有挑战性。

为了克服该困难,研究人员开发了一种新的策略,该策略涉及调控孔表面的氢键纳米陷阱,以促进三种同构金属-有机框架(MOFs,分别命名为MIL-160、CAU-10H和CAU-23)中C2H2/CO2混合物的分离。其中,MIL-160具有丰富的氢键受体,如纳米环,可以选择性地捕获乙炔分子,并显示出超高的C2H2储存容量(191 cm3 g–1或213 cm3 cm–3),但在环境条件下的CO2吸收量(90 cm3 g–1)要少得多。

在相同条件下,MIL-160的C2H2吸附量显著高于其他两种同构MOFs(CAU-10H和CAU-23分别为86和119 cm3 g–1)。更重要的是,模拟和实验突破性结果表明,MIL-160在分离潜力(Δqbreak=5.02 mol/kg)和C2H2生产率(6.8 mol/kg)方面为等摩尔C2H2/CO2分离设定了新的基准。此外,原位FT-IR实验和计算建模进一步揭示,纳米RAP和C2H2之间独特的主-客体多氢键相互作用,是实现卓越乙炔储存容量和卓越C2H2/CO2选择性的关键因素。

该工作为解决极具挑战性的气体分离问题提供了一种新颖而有力的方法。

附:英文原文

Title: Metal–Organic Framework Based Hydrogen-Bonding Nanotrap for Efficient Acetylene Storage and Separation

Author: Yingxiang Ye, Shikai Xian, Hui Cui, Kui Tan, Lingshan Gong, Bin Liang, Tony Pham, Haardik Pandey, Rajamani Krishna, Pui Ching Lan, Katherine A. Forrest, Brian Space, Timo Thonhauser, Jing Li, Shengqian Ma

Issue&Volume: December 29, 2021

Abstract: The removal of carbon dioxide (CO2) from acetylene (C2H2) is a critical industrial process for manufacturing high-purity C2H2. However, it remains challenging to address the tradeoff between adsorption capacity and selectivity, on account of their similar physical properties and molecular sizes. To overcome this difficulty, here we report a novel strategy involving the regulation of a hydrogen-bonding nanotrap on the pore surface to promote the separation of C2H2/CO2 mixtures in three isostructural metal–organic frameworks (MOFs, named MIL-160, CAU-10H, and CAU-23, respectively). Among them, MIL-160, which has abundant hydrogen-bonding acceptors as nanotraps, can selectively capture acetylene molecules and demonstrates an ultrahigh C2H2 storage capacity (191 cm3 g–1, or 213 cm3 cm–3) but much less CO2 uptake (90 cm3 g–1) under ambient conditions. The C2H2 adsorption amount of MIL-160 is remarkably higher than those for the other two isostructural MOFs (86 and 119 cm3 g–1 for CAU-10H and CAU-23, respectively) under the same conditions. More importantly, both simulation and experimental breakthrough results show that MIL-160 sets a new benchmark for equimolar C2H2/CO2 separation in terms of the separation potential (Δqbreak = 5.02 mol/kg) and C2H2 productivity (6.8 mol/kg). In addition, in situ FT-IR experiments and computational modeling further reveal that the unique host–guest multiple hydrogen-bonding interaction between the nanotrap and C2H2 is the key factor for achieving the extraordinary acetylene storage capacity and superior C2H2/CO2 selectivity. This work provides a novel and powerful approach to address the tradeoff of this extremely challenging gas separation.

DOI: 10.1021/jacs.1c10620

Source: https://pubs.acs.org/doi/10.1021/jacs.1c10620

 

期刊信息

JACS:《美国化学会志》,创刊于1879年。隶属于美国化学会,最新IF:14.612
官方网址:https://pubs.acs.org/journal/jacsat
投稿链接:https://acsparagonplus.acs.org/psweb/loginForm?code=1000