当前位置:科学网首页 > 小柯机器人 >详情
DNAzyme介导RNA切割的结构基础
作者:小柯机器人 发布时间:2021/12/26 13:24:36

德国杜塞尔多夫海因里希·海涅大学Manuel Etzkorn小组在研究中取得进展。他们通过时间分辨率结构分析了DNAzyme切割RNA的催化机制。2021年12月23日出版的《自然》发表了这项成果。

研究人员提供了10-23 DNAzyme所有催化状态的高分辨率NMR表征图,并对其催化功能的结构学和动力学进行了全面解析。催化脱氧核糖核酸酶-RNA复合物的明确结构和金属离子结合位点表明,DNA介导的催化是三个因素之间的相互作用完成:独特的分子结构、明显的构象可塑性和金属离子的动态调控。

研究人员通过实时核磁共振测量进一步确定了DNA介导催化过程中先前未知的限速瞬时中间态。使用合理的单原子置换,研究人员可以显著提高DNAzyme的性能,说明该研究得到的分子结构、可塑性和长时中间态的发生为合理设计下一代DNA酶提供了有价值的信息。

据了解,10-23DNAzyme是具有最高催化活性的DNA序列之一。它能够以高选择性切割各种RNA靶序列,具有巨大的治疗和生物应用潜力。然而,其应用尚未得到开发,这是因为缺乏有关其作用方式的高分辨率时间结构信息。

附:英文原文

Title: Time-resolved structural analysis of an RNA-cleaving DNA catalyst

Author: Borggrfe, Jan, Victor, Julian, Rosenbach, Hannah, Viegas, Aldino, Gertzen, Christoph G. W., Wuebben, Christine, Kovacs, Helena, Gopalswamy, Mohanraj, Riesner, Detlev, Steger, Gerhard, Schiemann, Olav, Gohlke, Holger, Span, Ingrid, Etzkorn, Manuel

Issue&Volume: 2021-12-23

Abstract: The 10–23 DNAzyme is one of the most prominent catalytically active DNA sequences1,2. Its ability to cleave a wide range of RNA targets with high selectivity entails a substantial therapeutic and biotechnological potential2. However, the high expectations have not yet been met, a fact that coincides with the lack of high-resolution and time-resolved information about its mode of action3. Here we provide high-resolution NMR characterization of all apparent states of the prototypic 10–23 DNAzyme and present a comprehensive survey of the kinetics and dynamics of its catalytic function. The determined structure and identified metal-ion-binding sites of the precatalytic DNAzyme–RNA complex reveal that the basis of the DNA-mediated catalysis is an interplay among three factors: an unexpected, yet exciting molecular architecture; distinct conformational plasticity; and dynamic modulation by metal ions. We further identify previously hidden rate-limiting transient intermediate states in the DNA-mediated catalytic process via real-time NMR measurements. Using a rationally selected single-atom replacement, we could considerably enhance the performance of the DNAzyme, demonstrating that the acquired knowledge of the molecular structure, its plasticity and the occurrence of long-lived intermediate states constitutes a valuable starting point for the rational design of next-generation DNAzymes.

DOI: 10.1038/s41586-021-04225-4

Source: https://www.nature.com/articles/s41586-021-04225-4

 

期刊信息

Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:43.07
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html