当前位置:科学网首页 > 小柯机器人 >详情
矢量计算可建立一个非自我中心的旅行方向信号
作者:小柯机器人 发布时间:2021/12/19 23:50:52

美国洛克菲勒大学Gaby Maimon小组发现,矢量计算可建立一个非自我中心的旅行方向信号。2021年12月15日,《自然》杂志在线发表了这项成果。

研究人员展示了果蝇的中央复合体(一个与目标导向的导航有关的区域)是如何进行矢量运算的。首先,研究人员描述了扇形身体中的一个神经信号,它明确地跟踪了果蝇的非自我中心旅行角度,也就是参考外部线索的旅行角度。过去的工作已经确定了果蝇和哺乳动物的神经元,这些神经元追踪动物参照外部线索的航向角(例如,头部方向细胞),但这个新信号阐明了当旅行和航向角不同时(例如,侧身行走时),空间感是如何正确更新的。然后,研究人员描述了一个神经元回路,它执行自我中心到非自我中心(即以身体为中心到以世界为中心)的坐标转换和矢量加法,从而计算异中心的行走方向。该回路通过将二维矢量映射到不同神经元群的正弦波活动模式上而运作,正弦波的振幅代表矢量的长度,其相位代表矢量的角度。这个回路的原理可以推广到其他大脑和需要矢量操作或参考框架转换的导航以外领域。
 
据了解,许多行为任务需要操纵数学矢量,但在计算模型之外,不知道大脑如何进行矢量运算。
 
附:英文原文
 
Title: Building an allocentric travelling direction signal via vector computation

Author: Lyu, Cheng, Abbott, L. F., Maimon, Gaby

Issue&Volume: 2021-12-15

Abstract: Many behavioural tasks require the manipulation of mathematical vectors, but, outside of computational models1,2,3,4,5,6,7, it is not known how brains perform vector operations. Here we show how the Drosophila central complex, a region implicated in goal-directed navigation7,8,9,10, performs vector arithmetic. First, we describe a neural signal in the fan-shaped body that explicitly tracks the allocentric travelling angle of a fly, that is, the travelling angle in reference to external cues. Past work has identified neurons in Drosophila8,11,12,13 and mammals14 that track the heading angle of an animal referenced to external cues (for example, head direction cells), but this new signal illuminates how the sense of space is properly updated when travelling and heading angles differ (for example, when walking sideways). We then characterize a neuronal circuit that performs an egocentric-to-allocentric (that is, body-centred to world-centred) coordinate transformation and vector addition to compute the allocentric travelling direction. This circuit operates by mapping two-dimensional vectors onto sinusoidal patterns of activity across distinct neuronal populations, with the amplitude of the sinusoid representing the length of the vector and its phase representing the angle of the vector. The principles of this circuit may generalize to other brains and to domains beyond navigation where vector operations or reference-frame transformations are required.

DOI: 10.1038/s41586-021-04067-0

Source: https://www.nature.com/articles/s41586-021-04067-0

期刊信息

Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:43.07
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html