当前位置:科学网首页 > 小柯机器人 >详情
科学家报道抗生素持久性中的普遍衰老动态
作者:小柯机器人 发布时间:2021/11/22 13:34:49

以色列耶路撒冷希伯来大学Nathalie Q. Balaban、Oded Agam等研究人员合作报道抗生素持久性中的普遍衰老动态。该项研究成果于2021年11月17日在线发表在《自然》杂志上。

研究人员报道了受到急性应激的单细胞动态,这种应激对于调节反应来说过于强烈,但并不致死。结果表明,当细菌的生长被急性瞬时暴露于强烈的抑制剂中而停止时,其重新生长动态的统计数字可以被一个细胞网络模型所预测。研究人员观察到,同样的压力,无论是突然施加还是逐渐施加,都会导致完全不同的恢复动态。通过测量成千上万个细胞的压力暴露后的再生动态,研究人员表明该模型可以预测抗生素持久性测量的结果。这些结果可能解释了无处不在的抗生素持久性表型,以及试图将其与特定基因联系起来的困难。

更广泛地说,这个方法表明,在压力下可以观察到两种不同的细胞状态:一种是调节状态,它为细胞的快速恢复做准备;另一种是由于急性压力造成的细胞紊乱状态,具有缓慢和异质的恢复动态。破坏状态可能是由大型随机网络的一般属性描述的,而不是由特定的途径激活。对中断状态的更好理解可以为压力下细胞的生存和进化提供新的启示。

据悉,应激反应使细胞通过激活特定的途径来适应外部条件的变化。

附:英文原文

Title: Observation of universal ageing dynamics in antibiotic persistence

Author: Kaplan, Yoav, Reich, Shaked, Oster, Elyaqim, Maoz, Shani, Levin-Reisman, Irit, Ronin, Irine, Gefen, Orit, Agam, Oded, Balaban, Nathalie Q.

Issue&Volume: 2021-11-17

Abstract: Stress responses allow cells to adapt to changes in external conditions by activating specific pathways1. Here we investigate the dynamics of single cells that were subjected to acute stress that is too strong for a regulated response but not lethal. We show that when the growth of bacteria is arrested by acute transient exposure to strong inhibitors, the statistics of their regrowth dynamics can be predicted by a model for the cellular network that ignores most of the details of the underlying molecular interactions. We observed that the same stress, applied either abruptly or gradually, can lead to totally different recovery dynamics. By measuring the regrowth dynamics after stress exposure on thousands of cells, we show that the model can predict the outcome of antibiotic persistence measurements. Our results may account for the ubiquitous antibiotic persistence phenotype2, as well as for the difficulty in attempts to link it to specific genes3. More generally, our approach suggests that two different cellular states can be observed under stress: a regulated state, which prepares cells for fast recovery, and a disrupted cellular state due to acute stress, with slow and heterogeneous recovery dynamics. The disrupted state may be described by general properties of large random networks rather than by specific pathway activation. Better understanding of the disrupted state could shed new light on the survival and evolution of cells under stress.

DOI: 10.1038/s41586-021-04114-w

Source: https://www.nature.com/articles/s41586-021-04114-w

期刊信息

Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:43.07
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html