当前位置:科学网首页 > 小柯机器人 >详情
DLBCL遗传亚型概率分类工具的治疗前景
作者:小柯机器人 发布时间:2020/4/17 19:54:28

美国国立卫生研究院的Louis M. Staudt研究组发现,扩散性大B细胞淋巴瘤(DLBCL)的遗传亚型的概率分类工具具有治疗意义。这一成果发表在2020413日出版的《癌细胞》杂志上。

他们描述一种算法,该算法根据患者的遗传特征确定其淋巴瘤属于七个遗传亚型之一的可能性。这种分类揭示了这些DLBCL亚型与各种惰性淋巴结和淋巴结外淋巴瘤类型之间的遗传相似性,表明存在共同的发病机理。

这些遗传亚型还具有独特的基因表达谱、免疫微环境和免疫化学疗法后的预后。遗传亚型模型的功能分析突出了针对性疗法的明显易感性,从而支持此分类在精准医疗试验中的应用。

据介绍,随着DLBCL的精准医疗方法的发展,其明显的遗传性、表型和临床异质性使人感到困惑。最近的多平台基因组研究使用聚类方法揭示了DLBCL遗传亚型的存在。

附:英文原文

Title: A Probabilistic Classification Tool for Genetic Subtypes of Diffuse Large B Cell Lymphoma with Therapeutic Implications

Author: George W. Wright, Da Wei Huang, James D. Phelan, Zana A. Coulibaly, Sandrine Roulland, Ryan M. Young, James Q. Wang, Roland Schmitz, Ryan D. Morin, Jeffrey Tang, Aixiang Jiang, Aleksander Bagaev, Olga Plotnikova, Nikita Kotlov, Calvin A. Johnson, Wyndham H. Wilson, David W. Scott, Louis M. Staudt

Issue&Volume: 2020/04/13

Abstract: The development of precision medicine approaches for diffuse large B cell lymphoma(DLBCL) is confounded by its pronounced genetic, phenotypic, and clinical heterogeneity.Recent multiplatform genomic studies revealed the existence of genetic subtypes ofDLBCL using clustering methodologies. Here, we describe an algorithm that determinesthe probability that a patient's lymphoma belongs to one of seven genetic subtypesbased on its genetic features. This classification reveals genetic similarities betweenthese DLBCL subtypes and various indolent and extranodal lymphoma types, suggestinga shared pathogenesis. These genetic subtypes also have distinct gene expression profiles,immune microenvironments, and outcomes following immunochemotherapy. Functional analysisof genetic subtype models highlights distinct vulnerabilities to targeted therapy,supporting the use of this classification in precision medicine trials.

DOI: 10.1016/j.ccell.2020.03.015

Source: https://www.cell.com/cancer-cell/fulltext/S1535-6108(20)30155-0

期刊信息

Cancer Cell:《癌细胞》,创刊于2002年。隶属于细胞出版社,最新IF:23.916
官方网址:https://www.cell.com/cancer-cell/home
投稿链接:https://www.editorialmanager.com/cancer-cell/default.aspx