论文标题:Parametric Investigation of Combustion and Heat Transfer Characteristics of Oscillating Linear Engine Alternator
期刊:Journal of Combustion
作者:Mehar Bade, Nigel N. Clark, Matthew C. Robinson et al
发表时间:2018/06/28
摘要:
An Oscillating Linear Engine Alternator (OLEA) has the potential to overcome the thermal, mechanical, and combustion inadequacies encountered by the conventional slider-crank engines. The linear engines convert the reciprocating piston motion into electricity, thereby eliminating needless crankshaft linkages and rotational motion. As the dead center positions are not explicitly identified unlike crankshaft engines, the linear engine exhibits different stroke and compression ratio every cycle and should manage the unfavorable events like misfire, rapid load changes, and overfueling without the energy storage of a flywheel. Further, the apparatus control and management strategy is difficult for OLEA when compared to conventional engines and depends on the combustion event influencing the translator dynamics. In this research paper, the MATLAB®/Simulink numerical model of a single cylinder, mechanical spring assisted, 2-stroke natural gas fueled, spark-ignited OLEA was investigated to enhance the perception of the coupled system. The effect of combustion and heat transfer characteristics on translator dynamics and performance of OLEA were analyzed by using Wiebe form factors, combustion duration, and heat transfer correlations. Variation in the Wiebe form factors revealed interesting insights into the translator dynamics and in-cylinder thermodynamics of a coupled system. High translator velocity, acceleration, and higher heat transfer rate were favored by low combustion duration.
阅读原文
(来源:科学网)
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。