作者:Eric Oermann 来源:《自然—医学》 发布时间:2018/9/16 11:11:24
选择字号:
深度学习开创诊断疾病新维度

 

《自然—医学》在线发表的两项独立研究显示,最新的深度学习算法可以基于三维医学影像对神经系统疾病和视网膜疾病给出快速、准确的自动诊断。

深度学习方法能识别二维医学影像,实现疾病诊断;但其对复杂详细的三维影像的识别效果尚不明朗。容积成像技术已经协助从业医师完成了不少医疗诊断,将深度学习算法成功应用于三维影像识别和疾病诊断,有望进一步缩小这项技术与人类专家的差距。

美国纽约伊坎医学院的Eric Oermann和同事使用全新卷积神经网络方法分析了37200多张头部CT扫描,不但对中风或出血等急性神经系统发作实现了正确诊断,还通过模拟临床应用证实该系统能缩短诊断时间。

在另一项研究中,英国伦敦DeepMind公司的Olaf Ronneberger和同事开发了一款深度学习架构,用于分析视网膜光学相干断层(OCT)扫描并诊断视网膜疾病,准确率高达95%。这些系统可以分别进行三维影像分割和疾病诊断,对不同成像设备输出的复杂医学扫描都能作出准确判断。

这两项互补研究将深度学习算法成功应用于三维医学影像的快速分析,意味着这些系统有望实现快速准确的诊断,从而提升医疗工作效率。(来源:中国科学报 唐一尘/编译)

 
 打印  发E-mail给: 
    
 
以下评论只代表网友个人观点,不代表科学网观点。
SSI ļʱ
 
相关新闻 相关论文

图片新闻
研究或摆脱光子时间晶体对高功率调制依赖 利用量子精密测量技术开展暗物质搜寻
天文学家找到最小恒星了吗 问答之间 | 如何开展科研之路
>>更多
 
一周新闻排行 一周新闻评论排行
 
编辑部推荐博文
 
论坛推荐