π堆积体系在自然界中广泛存在,比如有机半导体、液晶和DNA双螺旋结构等。由于体系中存在较强的π-π耦合,因此体系中电荷迁移较为容易。利用这一特性,π堆积体系常应用于电子器件中,比如有机半导体晶体管,DNA分子导线等。不同于传统的半导体体系,有机π堆积体系的电荷迁移服从跃迁机制,因而常规的半导体理论方法无法用于描述其电荷迁移行为。而且由于有机分子的多样性,有机π堆积体系也种类繁多。如何从上百万种可能中找到所需性能的有机π堆积体系是这个领域的关键问题。而一个能够准确定量化预测有机π堆积体系电荷迁移的理论方法是解决这一关键问题的核心。
2009年,该研究团队提出一套理论方法,结合Marcus理论和量化计算,能够较为准确预测有机半导体各相异性的载流子迁移率(J. Phys. Chem. B 2009, 113, 8614)。经过几年发展,逐步完善了理论体系,预测了一系列有机半导体中电荷迁移的规律(Chem. Commun. 2010,46,5133; Phys. Chem. Chem. Phys., 2010, 12, 9267)。基于这些前期工作,该成果提出进一步完善的理论方法,做到仅根据π堆积体系的晶体结构就能预测该体系的载流子迁移率,得到的预测结果与实验结果有很好的吻合。这个成果为用计算机大规模筛选所需性能的π堆积体系打下坚实基础。
该项工作得到国家自然科学基金委,973计划的大力支持。(来源:科学网 孙磊 刘万生)