|
|
固体核磁共振新进展!揭示固体催化剂表面物种吸附状态 |
|
近日,中国科学院大连化学物理研究所研究员侯广进团队利用高压原位固体核磁共振(NMR)技术,揭示了部分还原氧化铈催化剂表面上非解离吸附活化双氢物种的独特化学状态。相关成果发表在《美国化学会志》上。
研究揭示固体催化剂表面非解离活化双氢物种。大连化物所供图
氢气在固体催化剂表面的吸附活化是合成氨、合成气转化、储氢等诸多能源化工过程的关键步骤,这引发了研究人员对于催化剂表面氢物种化学状态及催化功能的研究兴趣。然而,受限于表面氢物种环境敏感的特点及固体催化剂表面结构复杂性问题,对催化剂表面氢物种的实验观测存在挑战。因此,亟需发展对表面氢物种的原位、高分辨分析方法,以研究其吸附位点、电子与几何结构、与催化剂的相互作用及对催化反应的影响等重要科学问题。
固体核磁共振技术是高分辨研究催化剂表面吸附物种的重要谱学技术。然而,常规的非原位固体核磁共振方法难以研究表面氢物种在内的气氛敏感的活性物种的真实化学状态。侯广进团队前期克服技术挑战,开发出了高温高压原位固体核磁共振技术,该技术具有较宽的压力和温度操作窗口,并用于固、液、气等多相体系的原位固体核磁共振研究中,揭示了材料合成机制、气体吸附、主客体相互作用、催化反应路径及动力学等关键科学问题。
本工作中,研究人员利用高压原位固体核磁共振技术,研究了氧化铈催化剂表面氢物种的化学状态。团队通过引入HD气体,原位动态下采集二维J耦合2H-1H相关谱,发现并证明了部分还原氧化铈表面存在非解离吸附的双氢物种。团队进一步通过精准测量其J耦合常数及运动弛豫的NMR分析,确定了该双氢物种的活化吸附状态,揭示了HD分子吸附在催化剂表面,H-D键被活化拉长。随后,团队与西安交通大学常春然教授理论计算团队合作,结合不同还原程度的氧化铈吸附氢气的原位1H NMR观测及DFT计算结果,证实了该双氢物种的吸附状态,及其与氧化铈表面氧空位缺陷之间的关联。此外,研究人员借助乙烯加氢的探针反应,利用原位NMR技术观测到了该物种的催化转化过程。
该工作有助于加深对固体催化剂表面氢气吸附活化过程的认识,相关研究分析方法也有望拓展用于研究其它气体的吸附转化过程,从而指导相关催化剂和催化过程的精准设计。
相关论文信息:https://doi.org/10.1021/jacs.4c08258
版权声明:凡本网注明“来源:中国科学报、科学网、科学新闻杂志”的所有作品,网站转载,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱:shouquan@stimes.cn。