作者:张梦然 来源:科技日报 发布时间:2024/7/25 11:22:20
选择字号:
AI模型准确进行天气预测与气候模拟

 

《自然》23日报道了一种人工智能(AI)模型。该模型名为“NeuralGCM”,结合了流体动力学与神经网络,能进行准确的天气预测和气候模拟。模型超越了部分现有模型,与传统模型相比,有望节省大量算力。

“NeuralGCM”模型结构。其结合了传统的流体动力学求解器和用于小尺度物理的神经网络。图片来源:谷歌/《自然》

  ?

一般环流模型(GCMs)能表示大气、海洋和陆地的物理过程,是天气和气候预测的基础。而减少长期预报的不确定性以及估算极端天气事件,则是气候预测的关键。机器学习模型一直被认为是天气预测的一种替代手段,它们在节省算力成本方面具有优势,但在长期预报方面的表现常常不如一般环流模型。

鉴于此,美国谷歌研究院团队设计了“NeuralGCM”,这个模型结合了机器学习和物理方法,能进行中短期天气预报以及几十年的气候模拟。该模型对1—15天预报的准确率能媲美欧洲中期天气预报中心(ECMWF,最好的传统物理天气模型之一)的预测结果。对于最多提前10天的预报,“NeuralGCM”的准确率与现有机器学习技术不相上下,有时甚至更好。

“NeuralGCM”的气候模拟准确率与最好的机器学习和物理方法相当。当团队在“NeuralGCM”的40年气候预测中加入海平面温度后,他们发现,模型给出的结果与从ECMWF数据中发现的全球变暖趋势一致。新模型在预测龙卷风及其轨迹方面也超过了已有的气候模型。

团队总结道,这些结果共同表明,机器学习是提升一般环流模型的一个可行手段。

 
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。
 
 打印  发E-mail给: 
    
 
相关新闻 相关论文

图片新闻
研究或摆脱光子时间晶体对高功率调制依赖 利用量子精密测量技术开展暗物质搜寻
天文学家找到最小恒星了吗 问答之间 | 如何开展科研之路
>>更多
 
一周新闻排行
 
编辑部推荐博文