作者:刘霞 来源:科技日报 发布时间:2021/9/23 10:42:47
选择字号:
下一代储备池计算速度提高百万倍
可用于解决目前信息处理难题

 

科技日报北京9月22日电 (记者刘霞)储备池计算是一种模仿人脑工作方式的计算方法。美国科学家在最新一期《自然·通信》杂志上撰文称,他们找到了一种新方法,将储备池计算的速度提高33到100万倍,而所需的计算资源和数据输入却大大减少,新一代储备池计算有助于解决一些最困难的信息处理问题,比如预测流体的动态等。

事实上,在一次测试中,研究人员在台式计算机上用不到一秒钟的时间就解决了一个复杂的计算问题。研究主要作者、美国俄亥俄州立大学物理学教授丹尼尔·高蒂尔说,同样的问题需要超级计算机来解决,而且需要更长时间。

高蒂尔解释称,储备池计算是21世纪初出现的一种机器学习算法,用于解决“最难”的计算问题,如预测动力系统(比如天气)随时间的演化情况。以前的研究表明,储备池计算非常适合学习动力系统并准确预测它们未来的行为。

它使用类似人脑的人工神经网络实现这一点。科学家将动态网络上的数据输入网络中随机连接的人工神经元组成的储备池内。网络产生有用的输出,科学家可对其进行解释并输入网络中,从而对系统未来的发展作出越来越准确的预测。系统越大、越复杂,科学家们希望预测得越准确,为此人工神经元网络就必须越大,完成任务所需的计算资源和时间也就越多。

在最新研究中,高蒂尔及其同事对整个储备池计算系统进行了简化,从而显著减少了所需的计算资源并节省大量计算时间。结果表明,在不同的测试中,新系统比当前系统可以快33到100万倍。而且,与当前一代模型需要4000个神经元相比,新一代计算仅需28个神经元就达到了同样的精度。

高蒂尔进一步指出:“科学家目前必须输入1000或10000个数据点或更多数据点对储备池计算机进行预热——对需要输入储备池计算机的数据进行训练,但新系统只需要输入两三个数据点。”在测试中,他们用400个数据点获得了与现在使用5000或更多数据点相同的结果。

 
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。
 
 打印  发E-mail给: