作者:沈春蕾 来源:中国科学报 发布时间:2020/7/20 20:33:46
选择字号:
伊辛模型研究自旋玻璃获进展

 

中国科学院金属研究所研究员张志东在解决铁磁性三维伊辛模型精确解这个物理学难题后,又在计算机领域计算复杂性理论研究方面取得重要进展。

在近期的研究工作中,张志东确定了自旋玻璃三维伊辛模型的计算复杂度的下限,为一个绝对极小核模型的计算复杂度,它包含一个与其最近邻平面相互作用的自旋玻璃二维伊辛模型,是亚指数时间,超多项式时间。相关成果日前发表在《材料科学与技术》。

玻璃是我们日常生活中经常使用的用品,理解玻璃的形成机制以及动力学行为是一个重大科学问题。在磁性材料中,与玻璃相对应,存在一种自旋玻璃的状态。

自旋玻璃是一个无序的磁体,其中原子的自旋不是按照规则图案排列。与铁磁体中的磁性有序相比较,自旋玻璃中的磁性无序,就类似于玻璃中的位置无序与石英的有序相比较。张志东介绍,某种程度上,我们可以把自旋玻璃态看成具有自旋的无序取向的有序状态,在其中自旋在空间无序地取向,但是可能随时间的演化保持有序。

为什么用伊辛模型来研究自旋玻璃?张志东解释道,伊辛模型每个晶格点上有一个自旋,有自旋向上或者向下两种状态,自旋之间具有相互作用。伊辛模型不仅可以描述一个磁性晶格从顺磁性到铁磁性的相变,也可以描述不同的体系(如反铁磁、格气、大生物分子等)中有序—无序相变。

自旋玻璃三维伊辛模型有拓扑效应、随机性、阻挫、非遍历性质等特征,导致其计算非常复杂,人们一直无法确定其计算复杂度的下限。为此,张志东证明了自旋玻璃三维伊辛模型计算复杂度的四个定理,并确定了自旋玻璃三维伊辛模型的计算复杂度的下限为亚指数时间,超多项式时间。

他表示,自旋玻璃三维伊辛模型可以被映射为许多其他的科学问题,所以本项工作的结论可以直接推广应用,解决物理、化学、生物、数学、材料科学以及计算机领域一系列相关问题,特别是解决计算机领域的重大基础科学问题。

 
版权声明:凡本网注明“来源:中国科学报、科学网、科学新闻杂志”的所有作品,网站转载,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱:shouquan@stimes.cn。
 
 打印  发E-mail给: 
    
 
相关新闻 相关论文

图片新闻
固体核磁共振新进展! 新生开学,导师:8点要做,3点不要做
3颗火山玻璃珠证明月球1.2亿年前仍活着 实验室培养干细胞或成为癌症治疗突破点
>>更多
 
一周新闻排行 一周新闻评论排行
 
编辑部推荐博文