“我国需要进一步加快布局计算医学新型数字基础设施,发挥算力、人工智能方法、大数据作为使能技术的带动作用,充分释放生物医学大数据的价值,赋能我国医疗和制药产业。”今年两会,全国人大代表、步长制药总裁赵超带来了一份关于布局计算医学新型数字基础设施的建议。
“补短板、创未来”极佳时期
当前,全球生物医药领域正处于底层技术迅猛变革的转型期。以基因治疗、肿瘤免疫学等为代表的生物医学技术和以人工智能、大数据为核心的信息技术形成了双轮驱动力量。
计算医学正是以信息科学与生物医学交叉融合为基础,深度挖掘生物医学大数据获得全新医疗价值。“它能够提供全新药靶,加速新药研发,提升慢性病与疑难症医疗水平,大幅减轻患者用药负担,全面提高医保基金使用效率,同时为后工业革命时代产业发展以及社会进步提供全新发展方向。”赵超说。
据了解,目前基于人工智能的新药研发平均1~2年就可以完成临床前药物研发,全世界利用该技术的在研药物管线约200个。预计到2028年,人工智能为生物医药行业每年可节省约700亿美元的研发成本。
从全球范围来看,人工智能、大数据在生物医药的应用虽然还处于早期阶段,但全球诸多知名制药企业都纷纷与人工智能企业进行研发合作。“我国生物医药产业正处在由仿制向创新迈进的关键爬坡期,仅依靠传统制药技术难以实现产业超越,这就需要数据技术和制药技术双轮驱动。”赵超表示,这将为我们“补短板、创未来”赢得极佳的时间窗口。
跨领域认知不足
不过,当前我国生物医药产业智能化升级还存在诸多制约因素。
赵超表示,虽然生物医学数据已经进入了PB级时代,但是从计算医学角度看, 95%以上的现有数据只能满足统计学意义的回顾性研究。数据碎片化、标准多样化、数据库建设低水平重复,个体数据不够立体,共享机制不足等问题较为突出,数据难以有效融合处理。
比如,在药物临床试验通常投入大、耗时长、失败率高,而计算医学可以发挥空间很大。但由于行业界限,临床领域与计算医学协同创新积极性不高,影响新药研发的成功率和产业价值的提升。
另外,对人工智能、大数据的认知不足也是不可回避的问题。一项对全球超过300位药物研发科学家的调查显示,41%的被调研者并不了解人工智能技术。
“这就更谈不上如何让他们利用机器学习、知识图谱等技术进行新药开发。”赵超表示,这种认知不足会导致关键决策者对新技术产生主观的不信任,进而导致不敢也不愿意对新的数字基础设施做出投入决策。
顶层设计助“弯道超车”
基于此,赵超提出加快布局计算医学新型数字基础设施的政策建议。
他认为,应由科研力量国家队牵头,推动“计算医学”新型数字基础设施建设。依托在国内学科深度融合方面布局早,发展好的科研单位,比如中科院计算所、中科院基因组所、哈尔滨工业大学等单位牵头建设计算医学的共性技术平台。
采访中,记者了解到,国内一些单位通过计算医学技术发现了当前主要应用于激素受体阳性Her2阴性乳腺癌患者群体的热点药物CDK4/6抑制剂的新临床场景,如果通过临床试验取得成功,将会给药企带来百亿美元利益。
赵超建议,应由国家相关部门对计算医学的共性技术平台的建设给与一定的政策资金支持,用于扩容数据中心等硬件基础投入和学科交叉团队的培养。通过集约化建设,避免重复投资、重复建设带来的资金浪费与时间窗口流失的问题。
其实,早在2016年,美国食品药品监督管理局血液和肿瘤产品办公室(OHOP)就与美国卫生和人类服务部在肿瘤学领域启动了一项跨学科创新计划——信息交换和数据转换计划(简称“INFORMED”计划)。该计划旨在利用大数据和高级分析技术的力量来服务于精准药物开发,包括探索新的研究终点,药物靶标和患者分组策略等。
赵超还建议,由国家药监局与国家卫健委、科技部联合牵头启动计算医学虚拟联合实验室,打破深度交叉的界别限制,组建跨学科的专家咨询委员会,协助生物医药企业、医疗机构梳理可适合数据驱动的业务场景。
另外,上述实验室还可以定期举办跨学科的交流沟通会,增强两大学科领域的相互理解。通过该机制引导相关企业、机构克服对新一代信息技术认知不足的瓶颈,打破应用障碍,向大纵深推进到药企,助力医药研发做出精准、客观的投入决策。
此外,完善生物医学大数据的数据标准,推动有条件开放共享,保障数据要素质量,促进数据要素规范化流通也是必经之路。
“以先进的计算技术补上生物医药领域的短板,利用计算医学新基建布局未来,相信我国生物医药产业一定会实现‘弯道超车’。”赵超说。
版权声明:凡本网注明“来源:中国科学报、科学网、科学新闻杂志”的所有作品,网站转载,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱:shouquan@stimes.cn。