仇旻和团队成员在调试冰刻系统2.0。
冰刻系统2.0已在实验中雏形初现,中间圆型的“中转舱”是实现一站式的关键,样品每完成一个步骤,都将被送回到这里,再由机械臂将其送入下个步骤的“操作间”。
从冰层沉积开始到吹除废料结束,加工全程不涉及化学溶剂。
还记得儿时看过的冰雕展吗?美轮美奂的宫殿、动物、丛林,让人不得不赞叹匠人的鬼斧神工。
如果,这样的冰雕是发生在仅有头发丝八分之一粗细的光纤末端,并且不止雕刻一件作品,而是同时雕刻百件以上,那又是怎样的风景?
过去两个月,西湖大学仇旻研究团队在Nano Letters、Nanoscale、Applied Surface Science等期刊上连续发表一系列研究成果,对小到微米甚至纳米级别的“冰雕”游刃有余,从精确定位到精准控制雕刻力度,再到以“冰雕”为模具制作结构、加工器件,一套以“wafer in, device out”为目标的“冰刻2.0”三维微纳加工系统雏形初现。
“其实我们只是把传统电子束光刻技术中的‘光刻胶’换成了冰。”仇旻说。但这一换,却换出了一片全新的想象空间。
什么是“冰刻”
如何用巧克力粉在奶油蛋糕表面洒出“生日快乐”四个字?你需要一片模具,模具上有镂空的“生日快乐”字样。巧克力粉透过模具洒落到蛋糕上,“生日快乐”四个字就出现了。
类似的原理,也应用在传统的电子束光刻技术中(微纳加工的核心技术之一)。
假设我们要在硅晶片上加工四个纳米尺度的金属字“西湖大学”,首先,需要将一种叫“光刻胶”的材料均匀地涂抹在晶片表面;用电子束(相当于肉眼看不见的“雕刻刀”)在真空环境中将“西湖大学”四个字写在光刻胶上,对应位置的光刻胶性质会发生变化;再用化学试剂洗去改性部分的胶,一片“镂空”的光刻胶模具就做好了;接下来便是将金属“填”进镂空位置,使之“长”在晶片表面;最后再用化学试剂将所有光刻胶清洗干净,去除废料后只留下金属字。
光刻胶是微纳加工过程中非常关键的材料。有人说,中国要制造芯片,光有光刻机还不够,还得打破国外对“光刻胶”的垄断。
但这样的“光刻胶”有局限性。
“在样品上涂抹光刻胶,这是传统光刻加工的第一步。这个动作有点像摊鸡蛋饼,如果铁板不平整,饼就摊不好。同时,被抹胶的地方,面积不能太小,否则胶不容易摊开摊匀;材质不能过脆,否则容易破裂。”仇旻实验室助理研究员赵鼎说。
那么,把光刻胶变成水冰呢?
《孙子兵法》中说:“兵无常势,水无常形。”零下140度左右的真空环境,能让水蒸气凝华成无定形冰。“无常形”的水蒸气可以包裹任意形状的表面,哪怕是极小的样品也没有问题;水蒸气的轻若无物,也使得在脆弱材料上加工变成可能。对应“光刻胶”,他们给这层水冰起名“冰胶”,给冰胶参与的电子束光刻技术起名“冰刻”。
实际上,一旦将光刻胶换成了冰胶,还能够极大地简化加工流程,规避洗胶带来的污染,以及难以洗净的光刻胶残留导致良品率低等问题。特别是“光刻”的最后一步,“冰刻”只需要让冰融化或升华成水蒸气即可,仿佛这层冰胶从来不曾存在过一样。
从原材料到成品一气呵成
2012年,仇旻从瑞典皇家工学院回国任教后不久,就开启了“冰刻”研究计划。经过六年的努力,他和他的团队将“冰刻”从纸上谈兵变成现实,完成了国内首台“冰刻”系统的研发。
来到西湖大学后,仇旻全力研发功能更加强大的“冰刻系统2.0”。他们希望创造出一套全流程一体化、自动化的微纳加工系统——从冰胶形成开始,到模具加工、材料生长、器件性能表征,一气呵成。
研究团队已经从精准定位、雕刻力度等多个维度入手,不断提升“冰刻”技术。
仇旻实验室2019级博士研究生吴珊,找到了控制“雕刻力度”的方法。她通过实验发现,冰胶去除厚度与电子作用强度呈线性关系。也就是说,“刻刀”在冰上凿刻时,下刀的力越大,刻出的槽就越深,并且下刀的力度和槽的深度能直接按比例推算。而使用光刻胶,电子与胶厚之间的关系要复杂得多,电子束“雕刻”时力道控制的精准性和灵活性就会受到约束。
仇旻实验室访问学生洪宇和其他团队成员,则发现不费“吹灰之力”就可以清除加工废料。他们利用冰刻技术不仅在光纤端面(光纤“头部”的横截面),而且在光纤曲面(光纤“身体”表面)上加工制作出各种精巧的微纳结构。尤其在最后清除废料环节,他们发现样品在真空中从低温升回室温后,多余的金属材料自然卷曲并与样品分离,可以被轻易地吹除。
除此之外,利用冰在电子作用下与材料发生的独特反应,“我们可以将只有一个原子层厚度的二维材料‘冰刻’成任意形状,通过人工构造的方式使材料产生奇特的性质。”仇旻实验室2019级博士研究生姚光南目前正在开展这方面的研究。
“Wafer in, device out.”短短四个单词,形象地描绘出他们为冰刻2.0制定的远大目标——一进一出,送进去的是原材料,拿出来的是成品器件。
复旦大学物理系主任、超构材料与超构表面专家周磊教授表示,这项工作对于研发集成度更高、功能性更强的光电器件具有重要的现实意义。
寂寞的冰上舞者
这是一群寂寞的冰上舞者。仇旻团队已在“冰刻”这块试验田深耕了八年。
最初,他了解到哈佛大学的一支研究团队演示了面向生命科学领域的“冰刻”加工雏形,这给了他灵感,让他看到了这项技术在微纳加工领域的巨大潜力。
这是一个无人区。仇旻用梦想的力量,感召了他回国后招收的第一批博士研究生之一赵鼎,他们决定一起来挑战这个课题。“不做康庄大道上的跟随者,而是独辟蹊径闯出一条新路,我想这是多数科研工作者更愿意的选择。”赵鼎说。
“冰刻”原理简单明了,但是仪器的实现则异常艰辛。团队需要对原有的电子束光刻设备进行大量改造。赵鼎为之奋斗了五年。“很多工作都是从零开始,比如注入水蒸气,说起来很简单,实际上经过了一次次实验,温度要多低、注入口和样品的距离要多远、注入量和速率要多大……都得一一验证。”
赵鼎毕业之后,师弟洪宇接力,为冰刻系统的研发绘制了几十稿设计图纸。因为没有现成的可以购买,多数情况下必须自己动手,他恶补了很多真空技术和热学方面的知识。
而今,在国外完成两年博士后研究之后,赵鼎又回到仇旻实验室,继续这场“冰刻”长跑。
事实上,全世界做冰刻的实验室,目前满打满算只有两个,一个在中国,一个在丹麦。显然,这不是一个热门的研究方向,且研发周期很长,想在这个课题上很快发文章并获得高引用很难。
“但这是一项令人激动的新技术,对以微纳加工为代表的超精密加工的探索和创新,正是中国制造指向的未来。”仇旻说。
在仇旻团队最新发表的文章结尾,他们用一种非常科幻的方式展望了“冰刻”的未来。毫无疑问,未来围绕“冰刻”的研究,将聚焦于传统“光刻”能力无法企及的领域。受益于水这种物质得天独厚的生物相容性,在生物样本上“冰刻”光子波导或电子电路有望得以实现。而这将史无前例地提高人为干预生物样本的能力,同时开辟出全新的学科交叉和研究方向。
相关论文信息:
https://doi.org/10.1039/D0NR05948J
https://doi.org/10.1016/j.apsusc.2020.148265
https://doi.org/10.1021/acs.nanolett.0c03809
版权声明:凡本网注明“来源:中国科学报、科学网、科学新闻杂志”的所有作品,网站转载,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱:shouquan@stimes.cn。