近日,大连化物所航天催化与新材料研究中心乔波涛研究员和张涛院士团队,与清华大学李隽教授,以及天津理工大学罗俊教授合作,在单原子催化方面获得新进展。利用金属-载体共价强相互作用成功制备出耐高温的高载量铂单原子催化剂,相关研究成果以《不用缺陷位点稳定的耐高温单原子催化剂》为题发表在《自然—通讯》上。
2011年,张涛研究团队与清华大学李隽教授以及美国亚利桑那大学刘景月教授合作,在国际上首次报道了单原子催化剂的制备与性能,并在此基础上提出了“单原子催化”的概念,当金属以原子级别分散于载体上形成单原子催化剂时,会表现出许多异于负载型纳米颗粒催化剂的特性,具有较高的表面能和热力学不稳定性,在高温条件下趋向于聚集成金属团簇甚至纳米颗粒,难以得到高温稳定的高载量单原子催化剂。
研究团队在长期探索单原子催化剂的制备和稳定机制的基础上,发现以共沉淀法制备的Pt1/FeOx单原子催化剂在800℃高温焙烧后依然完全保持原子级分散,证明金属与载体之间的强相互作用使单原子催化剂具有优异的热稳定性。依此提出依靠金属-载体共价强相互作用来稳定活性金属,使单原子催化剂彻底摆脱载体缺陷位数量对金属载量的限制。实验证明,负载在氧化铁载体上的Pt纳米颗粒,在空气中高温焙烧即可得到铂单原子催化剂,质量负载量可达1%。对照实验和理论计算说明铂纳米颗粒受热分散并稳定成单原子的现象与载体表面的缺陷无关,而是取决于载体本身的性质。在可还原氧化物载体(Fe2O3)上,铂纳米颗粒焙烧后会自发分散成单原子,而在非还原性载体(Al2O3)上,铂纳米颗粒受热将团聚成更大的颗粒。把氧化铁掺杂到氧化铝载体中可有效调节载体与金属的相互作用,有利于Pt纳米颗粒的热分散。在甲烷催化燃烧反应过程中,氧化铁负载的Pt纳米颗粒原位转化成Pt单原子催化剂,并表现出良好的催化活性和热稳定性。
本项研究揭示了负载型纳米颗粒催化剂热解分散成单原子催化剂的过程,初步探索了金属-载体共价强相互作用对活性金属的稳定机制,为设计耐高温、高载量的单原子催化体系提供了理论依据和重要借鉴。
相关链接DOI:https://doi.org/10.1038/s41467-018-08136-3