近日,澳大利亚昆士兰大学Warwick P. Bowen团队研究了芯片上的非线性波动动力学
浅水波是非线性流体力学的一个显著例子,它引起海啸和波浪等现象。这些动力学通常是在数百米长的波浪水槽中研究的。
在这项工作中,研究组展示了一个芯片级的波浪水槽,它利用纳米厚的超流氦膜和光力学相互作用来实现超越极端陆地流的非线性。测量揭示了波陡增、激波锋面和孤波裂变——超流氦中预测的非线性行为,但此前从未直接观察到。该方法可以实现光刻定义的波浪水槽几何形状,水动力特性的光机械控制,以及比陆地水槽更快的数量级测量。这种结合量子流体和纳米光子学的方法为探索微观尺度上复杂的波动动力学提供了一个平台。
附:英文原文
Title: Nonlinear wave dynamics on a chip
Author: Matthew T. Reeves, Walter W. Wasserman, Raymond A. Harrison, Igor Marinkovi, Nicole Luu, Andreas Sawadsky, Yasmine L. Sfendla, Glen I. Harris, Warwick P. Bowen, Christopher G. Baker
Issue&Volume: 2025-10-23
Abstract: Shallow-water waves are a notable example of nonlinear hydrodynamics, giving rise to phenomena such as tsunamis and undular waves. These dynamics are typically studied in hundreds-of-meters-long wave flumes. In this work, we demonstrate a chip-scale wave flume, which exploits nanometer-thick superfluid helium films and optomechanical interactions to achieve nonlinearities surpassing those of extreme terrestrial flows. Measurements reveal wave steepening, shock fronts, and solitary wave fission—nonlinear behaviors predicted in superfluid helium but never directly observed. Our approach enables lithography-defined wave flume geometries, optomechanical control of hydrodynamic properties, and orders-of-magnitude faster measurements than terrestrial flumes. This approach combining quantum fluids and nanophotonics provides a platform to explore complex wave dynamics at the microscale.
DOI: ady3042
Source: https://www.science.org/doi/10.1126/science.ady3042
