当前位置:科学网首页 > 小柯机器人 >详情
科学家成功研制用于探索奇异相互作用的自旋机械量子芯片
作者:小柯机器人 发布时间:2023/8/30 15:32:43

近日,中国科学技术大学张亮&杜江峰及其研究小组取得一项新进展。经过不懈努力,他们成功研制了用于探索奇异相互作用的自旋机械量子芯片。相关研究成果已于2023年8月28日在国际知名学术期刊《美国科学院院刊》上发表。

该研究团队提出了一个自旋机械量子芯片与可扩展的片上探测器兼容的概念。利用机械谐振器与单氮空位金刚石在微尺度上的集成实现的原型芯片,自旋速度依赖相互作用的约束提高了两个数量级,其中在100 nm以下的力范围内,即在2-10电子伏特的静止质量窗口内没有新的玻色子存在的证据。基于原理验证实验,这种有前途的芯片可以扩展,以满足以卓越的灵敏度搜索奇异相互作用的要求。低成本和高产量的芯片规模装置将加速暗物质探索的进程,为芯片上的基础物理实验提供一条道路。

据悉,阐明暗物质已成为当今基础科学中最重要的开放性问题之一,对认识自然规律具有重要意义。为了寻找暗物质粒子,探索标准模型之外的奇异相互作用是基本的方法之一。尽管在过去的几年里,已经在各种实验室规模和桌面规模的设置中进行了探索,但至今仍未观察到这种相互作用。因此,显著提高实验的灵敏度变得至关重要,但同时也具有极大的挑战性。

附:英文原文

Title: A spin-mechanical quantum chip for exploring exotic interactions

Author: Wu, Longhao, Lin, Shaochun, Kong, Xi, Wang, Mengqi, Zhou, Jingwei, Duan, Chang-Kui, Huang, Pu, Zhang, Liang, Du, Jiangfeng

Issue&Volume: 2023-8-28

Abstract: How to illuminate dark matter has become the foremost open question in fundamental science nowadays, which is of great significance in understanding the laws of nature. Exploring exotic interactions beyond the standard model is one of the essential approaches to searching for dark matter particles. Although it has been explored in a variety of lab-scale and tabletop-scale setups over the past years, no such interactions have been observed, and improving the sensitivity significantly becomes of paramount importance, but challenging. Here, we formulate the conception of a spin-mechanical quantum chip compatible with scalable on-chip detectors. Utilizing the prototype chip realized by the integration of a mechanical resonator and a diamond with single nitrogen vacancy at the microscale, the constraints of spin-velocity-dependent interactions have been improved by two orders of magnitude, where there is no evidence for new bosons in the force range below 100 nm, i.e., in the rest-mass window of 2–10 electronvolts. Based on the proof-of-principle experiment, this promising chip can be scaled up to meet the requirements of searching for exotic interactions at preeminent sensitivity. Low-cost and high-yield chip-scale setups will accelerate the process of dark matter exploration, providing a path toward on-chip fundamental physics experiments.

DOI: 10.1073/pnas.2302145120

Source: https://www.pnas.org/doi/10.1073/pnas.2302145120

期刊信息
PNAS:《美国科学院院刊》,创刊于1914年。隶属于美国科学院,最新IF:12.779
官方网址:https://www.pnas.org