当前位置:科学网首页 > 小柯机器人 >详情
有机-无机/共价-离子杂化分子可作为弹性陶瓷塑料
作者:小柯机器人 发布时间:2023/6/9 8:59:21

浙江大学刘昭明、唐睿康研究团队经过不懈努力,研制出一种有机-无机/共价-离子杂化分子,可作为具有弹性的陶瓷塑料。相关论文于2023年6月7日发表在《自然》杂志上。

尽管有机-无机杂化材料已经在力学、光学、电子学和生物医学材料中扮演了不可或缺的角色,孤立的有机-无机杂化分子(目前局限于共价化合物)还极少被用于制备杂化材料,这是因为有机共价键和无机离子键在分子构造中具有着迥然不同的行为。在这项研究中,研究者将典型的共价键和离子键整合到一个分子中,以创造一种有机-无机杂化分子,可用于“自下而上”地合成杂化材料。

通过将有机共价的硫辛酸(TA)和无机离子的碳酸钙寡聚物(CCO)以酸碱反应的形式结合起来,研究人员得到了一种TA-CCO的杂化分子,其代表分子式为TA2Ca(CaCO3)2. 该分子可在有机的TA段和无机的CCO段共聚的双重反应活性使其生成相应的共价和离子网格结构。这两种网格通过TA-CCO杂化结构互相连接,在得到的杂化材料聚(TA-CCO)中形成一种共价-离子双连续结构,这使得看似矛盾的力学属性在这种材料中得以统一起来,兼具陶瓷般的硬度和橡胶般的弹性。离子网格中Ca2+–CO32-键以及共价网格中的S-S键的可逆键合确保了该材料具有像塑料一样的可重复加工性,同时又保留了热稳定性。

研究人员表示,聚(TA-CCO)材料中类陶瓷、类橡胶和类塑料行为的同时存在已经打破了现有材料的划分规则,因而取名为“弹性陶瓷塑料”。这种“自下而上”创造有机-无机杂化材料的方式为杂化材料的分子工程提供了一条可行的道路,是对制造有机-无机杂化材料经典方法学的一种重要补充。

附:英文原文

Title: Organic–inorganic covalent–ionic molecules for elastic ceramic plastic

Author: Fang, Weifeng, Mu, Zhao, He, Yan, Kong, Kangren, Jiang, Kai, Tang, Ruikang, Liu, Zhaoming

Issue&Volume: 2023-06-07

Abstract: Although organic–inorganic hybrid materials have played indispensable roles as mechanical, optical, electronic and biomedical materials, isolated organic–inorganic hybrid molecules (at present limited to covalent compounds) are seldom used to prepare hybrid materials, owing to the distinct behaviours of organic covalent bonds and inorganic ionic bonds in molecular construction. Here we integrate typical covalent and ionic bonds within one molecule to create an organic–inorganic hybrid molecule, which can be used for bottom-up syntheses of hybrid materials. A combination of the organic covalent thioctic acid (TA) and the inorganic ionic calcium carbonate oligomer (CCO) through an acid–base reaction provides a TA–CCO hybrid molecule with the representative molecular formula TA2Ca(CaCO3)2. Its dual reactivity involving copolymerization of the organic TA segment and inorganic CCO segment generates the respective covalent and ionic networks. The two networks are interconnected through TA–CCO complexes to form a covalent–ionic bicontinuous structure within the resulting hybrid material, poly(TA–CCO), which unifies paradoxical mechanical properties. The reversible binding of Ca2+–CO32 bonds in the ionic network and S–S bonds in the covalent network ensures material reprocessability with plastic-like mouldability while preserving thermal stability. The coexistence of ceramic-like, rubber-like and plastic-like behaviours within poly(TA–CCO) goes beyond current classifications of materials to generate an ‘elastic ceramic plastic’. The bottom-up creation of organic–inorganic hybrid molecules provides a feasible pathway for the molecular engineering of hybrid materials, thereby supplementing the classical methodology used for the manufacture of organic–inorganic hybrid materials.

DOI: 10.1038/s41586-023-06117-1

Source: https://www.nature.com/articles/s41586-023-06117-1

期刊信息
Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/