当前位置:科学网首页 > 小柯机器人 >详情
溶液中单分子电化学反应的直接成像
作者:小柯机器人 发布时间:2021/8/13 13:55:45

近日,浙江大学教授冯建东及其课题组提出了溶液中单分子电化学反应的直接成像。该研究于2021年8月11日发表于国际一流学术期刊《自然》杂志上。

研究小组演示了在水溶液中单分子电化学反应的光学成像及其在超分辨率显微镜的运用。该方法利用化学发光反应,在电极上电化学地产生钌络合物,以确保最小的背景信号。这使得他们能够直接捕捉单个反应的电化学发光的单光子,并开发出超分辨电化学发光显微镜,以高时空分辨率成像活细胞的粘附动力学。该课题组预期他们的方法将推进对电化学反应的基本理解,并证明在生物分析和细胞成像应用中的可用性。

据了解,化学反应倾向于以单个分子转化为产物的方式来概念化,但它们实际上是在探究整体平均行为的实验中被观察到的。单分子方法超越了集合平均数,揭示了反应位置、途径和动力学的统计分布。这已经通过光学陷阱和扫描探针显微镜在确定的位置上以高空间分辨率操作和观察个体反应,以及使用超灵敏光电探测器的现代光学方法证明了,这些方法使高通量单分子测量成为可能。然而,有效探索单分子溶液化学仍然是一个挑战。

附:英文原文

Title: Direct imaging of single-molecule electrochemical reactions in solution

Author: Dong, Jinrun, Lu, Yuxian, Xu, Yang, Chen, Fanfan, Yang, Jinmei, Chen, Yuang, Feng, Jiandong

Issue&Volume: 2021-08-11

Abstract: Chemical reactions tend to be conceptualized in terms of individual molecules transforming into products, but are usually observed in experiments that probe the average behaviour of the ensemble. Single-molecule methods move beyond ensemble averages and reveal the statistical distribution of reaction positions, pathways and dynamics1,2,3. This has been shown with optical traps and scanning probe microscopy manipulating and observing individual reactions at defined locations with high spatial resolution4,5, and with modern optical methods using ultrasensitive photodetectors3,6,7 that enable high-throughput single-molecule measurements. However, effective probing of single-molecule solution chemistry remains challenging. Here we demonstrate optical imaging of single-molecule electrochemical reactions7 in aqueous solution and its use for super-resolution microscopy. The method utilizes a chemiluminescent reaction involving a ruthenium complex electrochemically generated at an electrode8, which ensures minimal background signal. This allows us to directly capture single photons of the electrochemiluminescence of individual reactions, and to develop super-resolved electrochemiluminescence microscopy for imaging the adhesion dynamics of live cells with high spatiotemporal resolution. We anticipate that our method will advance the fundamental understanding of electrochemical reactions and prove useful for bioassays and cell-imaging applications.

DOI: 10.1038/s41586-021-03715-9

Source: https://www.nature.com/articles/s41586-021-03715-9

期刊信息

Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:42.778
官方网址:http://www.nature.com/