当前位置:科学网首页 > 小柯机器人 >详情
在熔融盐中电化学裂解甲烷制氢气
作者:小柯机器人 发布时间:2021/1/14 16:04:43

近日,武汉大学肖巍课题组通过在熔融盐中电化学裂解甲烷实现了制氢气。该研究于2021年1月11日发表于国际一流学术期刊《德国应用化学》。

在该研究中,团队通过在500 °C的熔融盐中电化学裂解甲烷(ESM),实现了节能、无排放和无水条件下制氢气。按照甲烷制氢最节能的转化路线,甲烷在阳极被电化学氧化,并产生二氧化碳和氢气。在阳极生成的二氧化碳被熔融盐原位捕获,并在阴极被还原成固态碳,使阳极产氢和阴极积碳实现空间上的分离。

对该产氢技术的生命周期评估表明,ESM与甲烷蒸汽重整(MSR)相比等效碳排放大大降低,等效能耗则大大低于碱水电解法。

据介绍,基于甲烷蒸汽重整的工业产氢仍然存在很多挑战,包括产生大量碳排放,因在催化剂上积碳导致产氢效率钝化,以及消耗大量水资源等。

附:英文原文

Title: Electrochemical splitting of methane in molten salts to produce hydrogen

Author: Wei Xiao, Zeyu Fan

Issue&Volume: 11 January 2021

Abstract: Industrial hydrogen production based on methane steam reforming (MSR) remains challenges in intensive carbon emissions, retarded hydrogen generation due to coke deposition over catalysts, and huge consumption of water. We herein report an electrochemical splitting of methane (ESM) in molten salts at 500 °C to produce hydrogen in an energy saving, emission‐free and water‐free manner. Following the most energy‐saving route on methane‐to‐hydrogen conversion, methane is electrochemically oxidized at anode to generate carbon dioxide and hydrogen. The generated anodic carbon dioxide is in situ captured by the melts and reduced to solid carbon at cathode, enabling a spatial separation of anodic hydrogen generation from cathodic carbon deposition. Life cycle assessment on hydrogen‐generation technologies shows that the ESM experiences an equivalent carbon emission much lower than MSR, and a lower equivalent energy input than alkaline water electrolysis.

DOI: 10.1002/anie.202017243

Source: https://onlinelibrary.wiley.com/doi/10.1002/anie.202017243

期刊信息

Angewandte Chemie:《德国应用化学》,创刊于1887年。隶属于德国化学会,最新IF:12.959
官方网址:https://onlinelibrary.wiley.com/journal/15213773
投稿链接:https://www.editorialmanager.com/anie/default.aspx