当前位置:科学网首页 > 小柯机器人 >详情
X射线全息纳米断层扫描可重建密集神经元
作者:小柯机器人 发布时间:2020/9/16 14:25:32

美国哈佛大学Wei-Chung Allen Lee、Alexandra Pacureanu等研究人员合作,通过X射线全息纳米断层扫描对神经元进行密集重建。该研究于2020年9月14日在线发表于《自然—神经科学》。

研究人员发现,X射线全息纳米断层扫描(XNH)可以以100nm以下的分辨率成像毫米级体积,从而能够重建果蝇和小鼠神经组织中的密集分布。研究人员进行了相关的XNH和电子显微镜(EM)来重建数百个皮质锥体细胞,并显示更多的浅表细胞对其顶突产生了更强的突触抑制作用。

通过组合多次XNH扫描,研究人员成像了成年果蝇的腿部,并具有足够的分辨率以对机械感觉神经元进行全面分类,且跟踪从肌肉到中枢神经系统的单个运动轴突。

为了加速神经元的重建,研究人员训练了卷积神经网络来自动从XNH中分割出神经元。因此,XNH桥接了光学显微镜(LM)和EM之间的关键鸿沟,为神经回路发现提供了新途径。

据悉,神经元网络成像为理解神经系统提供了基础,但是在LM和EM上解析大体积密集的纳米级结构仍然具有挑战性。

附:英文原文

Title: Dense neuronal reconstruction through X-ray holographic nano-tomography

Author: Aaron T. Kuan, Jasper S. Phelps, Logan A. Thomas, Tri M. Nguyen, Julie Han, Chiao-Lin Chen, Anthony W. Azevedo, John C. Tuthill, Jan Funke, Peter Cloetens, Alexandra Pacureanu, Wei-Chung Allen Lee

Issue&Volume: 2020-09-14

Abstract: Imaging neuronal networks provides a foundation for understanding the nervous system, but resolving dense nanometer-scale structures over large volumes remains challenging for light microscopy (LM) and electron microscopy (EM). Here we show that X-ray holographic nano-tomography (XNH) can image millimeter-scale volumes with sub-100-nm resolution, enabling reconstruction of dense wiring in Drosophila melanogaster and mouse nervous tissue. We performed correlative XNH and EM to reconstruct hundreds of cortical pyramidal cells and show that more superficial cells receive stronger synaptic inhibition on their apical dendrites. By combining multiple XNH scans, we imaged an adult Drosophila leg with sufficient resolution to comprehensively catalog mechanosensory neurons and trace individual motor axons from muscles to the central nervous system. To accelerate neuronal reconstructions, we trained a convolutional neural network to automatically segment neurons from XNH volumes. Thus, XNH bridges a key gap between LM and EM, providing a new avenue for neural circuit discovery. Kuan, Phelps, et al. used synchrotron X-ray imaging and deep learning to map dense neuronal wiring in fly and mouse tissue, enabling examination of individual cells and connectivity in circuits governing motor control and perceptual decision-making.

DOI: 10.1038/s41593-020-0704-9

Source: https://www.nature.com/articles/s41593-020-0704-9#Sec34

期刊信息

Nature Neuroscience:《自然—神经科学》,创刊于1998年。隶属于施普林格·自然出版集团,最新if:21.126
官方网址:https://www.nature.com/neuro/
投稿链接:https://mts-nn.nature.com/cgi-bin/main.plex