当前位置:科学网首页 > 小柯机器人 >详情
RecV重组酶系统可用于体内靶向光遗传学修饰
作者:小柯机器人 发布时间:2020/3/24 17:22:40

近日,美国斯坦福大学Ali Cetin及其小组利用RecV重组酶系统,实现对单细胞或细胞群体的体内靶向光遗传学修饰。相关论文于2020年3月23日在线发表在《自然—方法学》杂志上。

大脑回路包括大量具有不同分子、解剖和生理特性的神经元,它们相互连接。为了能够靶向单个神经元靶向用于结构和功能研究,研究人员基于Cre、Dre和Flp(RecV)开发了光诱导位点特异性DNA重组酶。
 
RecV可在体内通过单光子或双光子光诱导来改变基因组修饰。通过修饰小鼠和斑马鱼基因组中的多个基因座,这一技术可以对单个神经元产生靶向性、零散且明确的标记。
 
结合其他遗传策略,这一技术可以交叉靶向不同的神经元类别。在小鼠皮层中,这一技术使零散标记以及单个神经元的全脑形态重建成为可能。此外,这些酶可实现单细胞双光子靶向遗传修饰,并且可以与具有最小干扰的功能性光学指示剂组合使用。
 
总而言之,RecV可以实现时空精确的光遗传学修饰,并通过链接遗传身份、形态、连通性和功能,来促进对神经回路的单细胞分析。
 
附:英文原文

Title: RecV recombinase system for in vivo targeted optogenomic modifications of single cells or cell populations

Author: Shenqin Yao, Peng Yuan, Ben Ouellette, Thomas Zhou, Marty Mortrud, Pooja Balaram, Soumya Chatterjee, Yun Wang, Tanya L. Daigle, Bosiljka Tasic, Xiuli Kuang, Hui Gong, Qingming Luo, Shaoqun Zeng, Andrew Curtright, Ajay Dhaka, Anat Kahan, Viviana Gradinaru, Radosaw Chrapkiewicz, Mark Schnitzer, Hongkui Zeng, Ali Cetin

Issue&Volume: 2020-03-23

Abstract: Brain circuits comprise vast numbers of interconnected neurons with diverse molecular, anatomical and physiological properties. To allow targeting of individual neurons for structural and functional studies, we created light-inducible site-specific DNA recombinases based on Cre, Dre and Flp (RecVs). RecVs can induce genomic modifications by one-photon or two-photon light induction in vivo. They can produce targeted, sparse and strong labeling of individual neurons by modifying multiple loci within mouse and zebrafish genomes. In combination with other genetic strategies, they allow intersectional targeting of different neuronal classes. In the mouse cortex they enable sparse labeling and whole-brain morphological reconstructions of individual neurons. Furthermore, these enzymes allow single-cell two-photon targeted genetic modifications and can be used in combination with functional optical indicators with minimal interference. In summary, RecVs enable spatiotemporally precise optogenomic modifications that can facilitate detailed single-cell analysis of neural circuits by linking genetic identity, morphology, connectivity and function.

DOI: 10.1038/s41592-020-0774-3

Source: https://www.nature.com/articles/s41592-020-0774-3

期刊信息

Nature Methods:《自然—方法学》,创刊于2004年。隶属于施普林格·自然出版集团,最新IF:28.467
官方网址:https://www.nature.com/nmeth/
投稿链接:https://mts-nmeth.nature.com/cgi-bin/main.plex