当前位置:科学网首页 > 小柯机器人 >详情
在高通量实验中量化和控制再现性
作者:小柯机器人 发布时间:2020/10/14 14:09:46

密歇根大学Xiaoquan Wen课题组提出量化和控制高通量实验再现性的统计方法。 相关论文于2020年10月12日发表在《自然—方法学》杂志上。

该研究团队提出了一套计算方法INTRIGUE,以评估和控制高通量设置中的再现性 (reproducitbility)。他们的方法是建立在再现性的一个新的定义,该定义强调实验单位使用符号效应值 (signed effect size)估计进行评估时的方向一致性。研究人员提出的方法旨在:1、评估多个研究的整体再现性质量;2、评估再现性在个体实验单位的水平。小组证明他们提出的方法通过模拟能够检测未被观察的批次效应(batch effects)。

该团队进一步展示了该方法在全转录组相关研究中的多功能性:除了再现质量控制,方法也适合调查真正的生物学异质性。最后,研究人员讨论了方法在其他重要领域的可再现研究上的潜在拓展(例如,发表偏差和概念上的复制)。INTRIGUE是基于方向一致性标准的统计框架,用于量化和控制高通量实验中的可重复性。

据介绍,确保高通量实验中结果的再现性对生物医学研究是至关重要的。

附:英文原文

Title: Quantify and control reproducibility in high-throughput experiments

Author: Yi Zhao, Matthew G. Sampson, Xiaoquan Wen

Issue&Volume: 2020-10-12

Abstract: Ensuring reproducibility of results in high-throughput experiments is crucial for biomedical research. Here, we propose a set of computational methods, INTRIGUE, to evaluate and control reproducibility in high-throughput settings. Our approaches are built on a new definition of reproducibility that emphasizes directional consistency when experimental units are assessed with signed effect size estimates. The proposed methods are designed to (1) assess the overall reproducible quality of multiple studies and (2) evaluate reproducibility at the individual experimental unit levels. We demonstrate the proposed methods in detecting unobserved batch effects via simulations. We further illustrate the versatility of the proposed methods in transcriptome-wide association studies: in addition to reproducible quality control, they are also suited to investigating genuine biological heterogeneity. Finally, we discuss the potential extensions of the proposed methods in other vital areas of reproducible research (for example, publication bias and conceptual replications). INTRIGUE is a statistical framework based on the directional consistency criterion for quantifying and controlling reproducibility in high-throughput experiments.

DOI: 10.1038/s41592-020-00978-4

Source: https://www.nature.com/articles/s41592-020-00978-4

期刊信息

Nature Methods:《自然—方法学》,创刊于2004年。隶属于施普林格·自然出版集团,最新IF:28.467
官方网址:https://www.nature.com/nmeth/
投稿链接:https://mts-nmeth.nature.com/cgi-bin/main.plex