来源:Nature Communications 发布时间:2019/3/6 11:25:20
选择字号:
如何在室温下转化气态CO2,制成碳电池?

论文标题:Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces

期刊:Nature Communications

作者:Dorna Esrafilzadeh, Ali Zavabeti, Rouhollah Jalili, Paul Atkin, Jaecheol Choi, Benjamin J. Carey, Robert Brkljaca, Anthony P. O’Mullane, Michael D. Dickey, David L. Officer, Douglas R. MacFarlane, Torben Daeneke, Kourosh Kalantar-Zadeh

发表时间:2019/02/26

论文标签:Carbon capture and storage, Electrocatalysis, Materials for energy and catalysis, Nanoscale materials

数字识别码: 10.1038/s41467-019-08824-8

原文链接:http://t.cn/EIhIJDY

微信链接:https://mp.weixin.qq.com/s/S5hRMdVUzcEU7E2AD0EJAQ

《自然-通讯》本周发表的一篇论文Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces阐述了如何在室温下将气态二氧化碳(CO2)转化为固体碳材料,并用于能量储存。这项研究对于去除大气中的CO2或具有应用价值。

图1: Torben Daeneke & Dorna Esrafilzadeh 图源:Mr Peter Clarke/RMIT University

碳排放技术对于 维持未来气候的稳定至关重要,但CO2的气体形态给这一温室气体的长期封存带来了困难。虽然很多研究都专注于将CO2还原成高附加值产品(如化学原料和燃料),但这些方法无法实现永久性碳捕捉(因为合成的燃料只会被用来燃烧)。

澳大利亚新南威尔士大学的Kourosh Kalantar-Zadeh、墨尔本皇家理工大学的Torben Daeneke、新南威尔士大学的Dorna Esrafilzadeh和同事研发了一种液态金属电催化剂,可以在室温下将气态CO2直接转化为含碳固体。这一液态金属催化剂基于无毒镓合金,能防止结焦(即固碳吸附于催化剂表面,降低催化剂的活性)。作者随后将收集得到的固体产物制成超级电容器,该超级电容器未来有望成为轻量级电池材料。

图2:催化过程 图源:Dr Ali Zavabeti/RMIT University

作者指出,此前的碳纳米材料制备方法通常需要几百摄氏度的高温,而他们研发的技术可以帮助降低CO2转化的高能耗需求。作者认为该方法有望成为可行的负碳排放技术。

摘要:Negative carbon emission technologies are critical for ensuring a future stable climate. However, the gaseous state of CO2 does render the indefinite storage of this greenhouse gas challenging. Herein, we created a liquid metal electrocatalyst that contains metallic elemental cerium nanoparticles, which facilitates the electrochemical reduction of CO2 to layered solid carbonaceous species, at a low onset potential of −310 mV vs CO2/C. We exploited the formation of a cerium oxide catalyst at the liquid metal/electrolyte interface, which together with cerium nanoparticles, promoted the room temperature reduction of CO2. Due to the inhibition of van der Waals adhesion at the liquid interface, the electrode was remarkably resistant to deactivation via coking caused by solid carbonaceous species. The as-produced solid carbonaceous materials could be utilised for the fabrication of high-performance capacitor electrodes. Overall, this liquid metal enabled electrocatalytic process at room temperature may result in a viable negative emission technology.

阅读论文全文请访问:http://t.cn/EIhIJDY

期刊介绍:Nature Communications (https://www.nature.com/ncomms/) is an open access journal that publishes high-quality research from all areas of the natural sciences. Papers published by the journal represent important advances of significance to specialists within each field.

The 2017 journal metrics for Nature Communications are as follows:

•2-year impact factor: 12.353

•5-year impact factor: 13.691

•Immediacy index: 1.829

•Eigenfactor® score: 0.92656

•Article Influence Score: 5.684

(来源:科学网)

 
 
 
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。
 
 打印  发E-mail给: 
    
 
以下评论只代表网友个人观点,不代表科学网观点。
 
相关新闻 相关论文

图片新闻
银河系发现巨大黑洞 史上最亮伽马射线暴来自一颗坍缩的恒星
中国天眼揭秘宇宙“随机烟花” 导师:年年审毕业论文,总有这些问题!
>>更多
 
一周新闻排行 一周新闻评论排行
 
编辑部推荐博文