当前位置:科学网首页 > 小柯机器人 >详情
科学家发现光调节多细胞鞭毛虫的集体收缩力
作者:小柯机器人 发布时间:2019/10/18 14:47:31

美国加州大学伯克利分校Nicole King团队研究发现,光调节多细胞鞭毛虫的集体收缩力。相关论文2019年10月18日发表在《科学》杂志上。

在调查加勒比岛的库拉索岛上的领鞭毛虫(动物的近亲)时,他们分离了一个先前未曾描述的物种(此处称为Choanoeca flexa sp.nov.),该物种形成了多细胞杯状菌落。菌落迅速改变其曲率,以响应不断变化的光照水平,它们通过视紫红质-环鸟苷单磷酸途径进行检测。反向需要放线菌素介导的顶端收缩力,并允许进食和游泳行为之间交替。因此,C. flexa (Choanoeca flexa sp.nov.)将感觉输入直接转换为多细胞收缩。这些发现可能有助于重建假设的动物祖先,这些动物祖先在专门的感觉和收缩细胞进化之前就已经存在。

据悉,产生整体组织变形的集体细胞收缩是动物运动和形态发生的标志性特征。然而,动物集体收缩的起源尚不清楚。

附:英文原文

Title: Light-regulated collective contractility in a multicellular choanoflagellate

Author: Thibaut Brunet, Ben T. Larson, Tess A. Linden, Mark J. A. Vermeij, Kent McDonald, Nicole King

Issue&Volume: 2019/10/18

Abstract: 

Collective cell contractions that generate global tissue deformations are a signature feature of animal movement and morphogenesis. However, the origin of collective contractility in animals remains unclear. While surveying the Caribbean island of Curaçao for choanoflagellates, the closest living relatives of animals, we isolated a previously undescribed species (here named Choanoeca flexa sp. nov.) that forms multicellular cup-shaped colonies. The colonies rapidly invert their curvature in response to changing light levels, which they detect through a rhodopsin–cyclic guanosine monophosphate pathway. Inversion requires actomyosin-mediated apical contractility and allows alternation between feeding and swimming behavior. C. flexa thus rapidly converts sensory inputs directly into multicellular contractions. These findings may inform reconstructions of hypothesized animal ancestors that existed before the evolution of specialized sensory and contractile cells.

DOI: 10.1126/science.aay2346

Source:https://science.sciencemag.org/content/366/6463/326

期刊信息
Science:《科学》,创刊于1880年。隶属于美国科学促进会,最新IF:41.037